Tensor calculus

Last updated

In mathematics, tensor calculus, tensor analysis, or Ricci calculus is an extension of vector calculus to tensor fields (tensors that may vary over a manifold, e.g. in spacetime).

Contents

Developed by Gregorio Ricci-Curbastro and his student Tullio Levi-Civita, [1] it was used by Albert Einstein to develop his general theory of relativity. Unlike the infinitesimal calculus, tensor calculus allows presentation of physics equations in a form that is independent of the choice of coordinates on the manifold.

Tensor calculus has many applications in physics, engineering and computer science including elasticity, continuum mechanics, electromagnetism (see mathematical descriptions of the electromagnetic field), general relativity (see mathematics of general relativity), quantum field theory, and machine learning.

Working with a main proponent of the exterior calculus Elie Cartan, the influential geometer Shiing-Shen Chern summarizes the role of tensor calculus: [2]

In our subject of differential geometry, where you talk about manifolds, one difficulty is that the geometry is described by coordinates, but the coordinates do not have meaning. They are allowed to undergo transformation. And in order to handle this kind of situation, an important tool is the so-called tensor analysis, or Ricci calculus, which was new to mathematicians. In mathematics you have a function, you write down the function, you calculate, or you add, or you multiply, or you can differentiate. You have something very concrete. In geometry the geometric situation is described by numbers, but you can change your numbers arbitrarily. So to handle this, you need the Ricci calculus.

Syntax

Tensor notation makes use of upper and lower indexes on objects that are used to label a variable object as covariant (lower index), contravariant (upper index), or mixed covariant and contravariant (having both upper and lower indexes). In fact in conventional math syntax we make use of covariant indexes when dealing with Cartesian coordinate systems frequently without realizing this is a limited use of tensor syntax as covariant indexed components.

Tensor notation allows upper index on an object that may be confused with normal power operations from conventional math syntax.

Key concepts

Vector decomposition

Tensors notation allows a vector () to be decomposed into an Einstein summation representing the tensor contraction of a basis vector ( or ) with a component vector ( or ).

Every vector has two different representations, one referred to as contravariant component () with a covariant basis (), and the other as a covariant component () with a contravariant basis (). Tensor objects with all upper indexes are referred to as contravariant, and tensor objects with all lower indexes are referred to as covariant. The need to distinguish between contravariant and covariant arises from the fact that when we dot an arbitrary vector with its basis vector related to a particular coordinate system, there are two ways of interpreting this dot product, either we view it as the projection of the basis vector onto the arbitrary vector, or we view it as the projection of the arbitrary vector onto the basis vector, both views of the dot product are entirely equivalent, but have different component elements and different basis vectors:

For example, in physics you start with a vector field, you decompose it with respect to the covariant basis, and that's how you get the contravariant coordinates. For orthonormal cartesian coordinates, the covariant and contravariant basis are identical, since the basis set in this case is just the identity matrix, however, for non-affine coordinate system such as polar or spherical there is a need to distinguish between decomposition by use of contravariant or covariant basis set for generating the components of the coordinate system.

Covariant vector decomposition

variabledescriptionType
vectorinvariant
contravariant components (ordered set of scalars)variant
covariant bases (ordered set of vectors)variant

Contravariant vector decomposition

variabledescriptiontype
vectorinvariant
covariant components (ordered set of scalars)variant
contravariant bases (ordered set of covectors)variant

Metric tensor

The metric tensor represents a matrix with scalar elements ( or ) and is a tensor object which is used to raise or lower the index on another tensor object by an operation called contraction, thus allowing a covariant tensor to be converted to a contravariant tensor, and vice versa.

Example of lowering index using metric tensor:

Example of raising index using metric tensor:

The metric tensor is defined as:

This means that if we take every permutation of a basis vector set and dotted them against each other, and then arrange them into a square matrix, we would have a metric tensor. The caveat here is which of the two vectors in the permutation is used for projection against the other vector, that is the distinguishing property of the covariant metric tensor in comparison with the contravariant metric tensor.

Two flavors of metric tensors exist: (1) the contravariant metric tensor (), and (2) the covariant metric tensor (). These two flavors of metric tensor are related by the identity:

For an orthonormal Cartesian coordinate system, the metric tensor is just the kronecker delta or , which is just a tensor equivalent of the identity matrix, and .

Jacobian

In addition a tensor can be readily converted from an unbarred() to a barred coordinate() system having different sets of basis vectors:

by use of Jacobian matrix relationships between the barred and unbarred coordinate system (). The Jacobian between the barred and unbarred system is instrumental in defining the covariant and contravariant basis vectors, in that in order for these vectors to exist they need to satisfy the following relationship relative to the barred and unbarred system:

Contravariant vectors are required to obey the laws:

Covariant vectors are required to obey the laws:

There are two flavors of Jacobian matrix:

1. The J matrix representing the change from unbarred to barred coordinates. To find J, we take the "barred gradient", i.e. partial derivative with respect to :

2. The matrix, representing the change from barred to unbarred coordinates. To find , we take the "unbarred gradient", i.e. partial derive with respect to :

Gradient vector

Tensor calculus provides a generalization to the gradient vector formula from standard calculus that works in all coordinate systems:

Where:

In contrast, for standard calculus, the gradient vector formula is dependent on the coordinate system in use (example: Cartesian gradient vector formula vs. the polar gradient vector formula vs. the spherical gradient vector formula, etc.). In standard calculus, each coordinate system has its own specific formula, unlike tensor calculus that has only one gradient formula that is equivalent for all coordinate systems. This is made possible by an understanding of the metric tensor that tensor calculus makes use of.

See also

Related Research Articles

<span class="mw-page-title-main">Divergence</span> Vector operator in vector calculus

In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

<span class="mw-page-title-main">Gradient</span> Multivariate derivative (mathematics)

In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field whose value at a point gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of . If the gradient of a function is non-zero at a point , the direction of the gradient is the direction in which the function increases most quickly from , and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to maximize a function by gradient ascent. In coordinate-free terms, the gradient of a function may be defined by:

<span class="mw-page-title-main">Tensor</span> Algebraic object with geometric applications

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors, dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system; those components form an array, which can be thought of as a high-dimensional matrix.

In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity. As part of mathematics it is a notational subset of Ricci calculus; however, it is often used in physics applications that do not distinguish between tangent and cotangent spaces. It was introduced to physics by Albert Einstein in 1916.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric tensor on M consists of a metric tensor at each point p of M that varies smoothly with p.

In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the canonical pairing of a vector space and its dual. In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression. The contraction of a single mixed tensor occurs when a pair of literal indices of the tensor are set equal to each other and summed over. In Einstein notation this summation is built into the notation. The result is another tensor with order reduced by 2.

<span class="mw-page-title-main">Covariance and contravariance of vectors</span> Manner in which a geometric object varies with a change of basis

In physics, especially in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometric or physical entities changes with a change of basis. In modern mathematical notation, the role is sometimes swapped.

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

<span class="mw-page-title-main">Curvilinear coordinates</span> Coordinate system whose directions vary in space

In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible at each point. This means that one can convert a point given in a Cartesian coordinate system to its curvilinear coordinates and back. The name curvilinear coordinates, coined by the French mathematician Lamé, derives from the fact that the coordinate surfaces of the curvilinear systems are curved.

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

<span class="mw-page-title-main">Cartesian tensor</span>

In geometry and linear algebra, a Cartesian tensor uses an orthonormal basis to represent a tensor in a Euclidean space in the form of components. Converting a tensor's components from one such basis to another is done through an orthogonal transformation.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

In mathematics, orthogonal coordinates are defined as a set of d coordinates in which the coordinate hypersurfaces all meet at right angles (note that superscripts are indices, not exponents). A coordinate surface for a particular coordinate qk is the curve, surface, or hypersurface on which qk is a constant. For example, the three-dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x = constant, y = constant, and z = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates.

In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.

A system of skew coordinates is a curvilinear coordinate system where the coordinate surfaces are not orthogonal, in contrast to orthogonal coordinates.

<span class="mw-page-title-main">Calculus of moving surfaces</span> Extension of the classical tensor calculus

The calculus of moving surfaces (CMS) is an extension of the classical tensor calculus to deforming manifolds. Central to the CMS is the Tensorial Time Derivative whose original definition was put forth by Jacques Hadamard. It plays the role analogous to that of the covariant derivative on differential manifolds in that it produces a tensor when applied to a tensor.

In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus, developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century.

Curvilinear coordinates can be formulated in tensor calculus, with important applications in physics and engineering, particularly for describing transportation of physical quantities and deformation of matter in fluid mechanics and continuum mechanics.

References

  1. Ricci, Gregorio; Levi-Civita, Tullio (March 1900). "Méthodes de calcul différentiel absolu et leurs applications" [Methods of the absolute differential calculus and their applications]. Mathematische Annalen (in French). Springer. 54 (1–2): 125–201. doi:10.1007/BF01454201. S2CID   120009332.
  2. "Interview with Shiing Shen Chern" (PDF). Notices of the AMS. 45 (7): 860–5. August 1998.

Further reading