Last updated

In geology, a terrane ( /təˈrn,ˈtɛrn/ ; [1] [2] in full, a tectonostratigraphic terrane) is a crust fragment formed on a tectonic plate (or broken off from it) and accreted or "sutured" to crust lying on another plate. The crustal block or fragment preserves its distinctive geologic history, which is different from the surrounding areas—hence the term "exotic" terrane. The suture zone between a terrane and the crust it attaches to is usually identifiable as a fault. A sedimentary deposit that buries the contact of the terrane with adjacent rock is called an overlap formation. An igneous intrusion that has intruded and obscured the contact of a terrane with adjacent rock is called a stitching pluton.


The older usage of terrane described a series of related rock formations or an area with a preponderance of a particular rock or rock group.


A tectonostratigraphic terrane is not necessarily an independent microplate in origin since it may not contain the full thickness of the lithosphere. It is a piece of crust that has been transported laterally, usually as part of a larger plate, and is relatively buoyant due to thickness or low density. When the plate of which it was a part subducted under another plate, the terrane failed to subduct, detached from its transporting plate, and accreted onto the overriding plate. Therefore, the terrane transferred from one plate to the other. Typically, accreting terranes are portions of continental crust which have rifted off another continental mass and been transported surrounded by oceanic crust, or they are old island arcs formed at some distant subduction zones.

A tectonostratigraphic terrane is a fault-bounded package of rocks of at least regional extent characterized by a geologic history that differs from that of neighboring terranes. The essential characteristic of these terranes is that the present spatial relations are incompatible with the inferred geologic histories. Where terranes that lie next to each other possess strata of the same age, it must be demonstrable that the geologic evolutions are different and incompatible. There must be an absence of intermediate lithofacies that could link the strata.

The concept of tectonostratigraphic terrane developed from studies in the 1970s of the complicated Pacific Cordilleran orogenic margin of North America, a complex and diverse geological potpourri that was difficult to explain until the new science of plate tectonics illuminated the ability of crustal fragments to "drift" thousands of miles from their origin and fetch up, crumpled, against an exotic shore. Such terranes were dubbed "accreted terranes" by geologists.

It was soon determined that these exotic crustal slices had in fact originated as "suspect terranes" in regions at some considerable remove, frequently thousands of kilometers, from the orogenic belt where they had eventually ended up. It followed that the present orogenic belt was itself an accretionary collage, composed of numerous terranes derived from around the circum-Pacific region and now sutured together along major faults. These concepts were soon applied to other, older orogenic belts, e.g. the Appalachian belt of North America.... Support for the new hypothesis came not only from structural and lithological studies, but also from studies of faunal biodiversity and palaeomagnetism. [3]

When terranes are composed of repeated accretionary events, and hence are composed of subunits with distinct history and structure, they may be called superterranes. [4]

Tectonostratigraphic terranes








North America

South America

Related Research Articles

<span class="mw-page-title-main">Orogeny</span> The formation of mountain ranges

Orogeny is a mountain-building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

<span class="mw-page-title-main">Orogenic belt</span> Zone affected by mountain formation

An orogenic belt, orogen, or mobile belt, is a zone of Earth's crust affected by orogeny. An orogenic belt develops when a continental plate crumples and is uplifted to form one or more mountain ranges; this involves a series of geological processes collectively called orogenesis.

<span class="mw-page-title-main">Caledonian orogeny</span> Mountain building event caused by the collision of Laurentia, Baltica and Avalonia

The Caledonian orogeny was a mountain-building cycle recorded in the northern parts of the British Isles, the Scandinavian Caledonides, Svalbard, eastern Greenland and parts of north-central Europe. The Caledonian orogeny encompasses events that occurred from the Ordovician to Early Devonian, roughly 490–390 million years ago (Ma). It was caused by the closure of the Iapetus Ocean when the Laurentia and Baltica continents and the Avalonia microcontinent collided.

<span class="mw-page-title-main">Smartville Block</span> Volcanic arc accreted onto the North American Plate

The Smartville Block, also called the Smartville Ophiolite, Smartville Complex, or Smartville Intrusive Complex, is a geologic terrane formed in the ocean from a volcanic island arc that was accreted onto the North American Plate during the late Jurassic. The collision created sufficient crustal heating to drive mineral-laden water up through numerous fissures along the contact zone. When these cooled, among the precipitating minerals was gold. Associated with the Western Metamorphic Belt of the Sierra Nevada foothills it extends from the central Sierra Nevada mountain range, due west, under a section of the Central Valley and California Coast Ranges, in northern California. The ophiolitic sequence found in this terrane is one of several major ophiolites found in California. Ophiolites are crustal and upper-mantle rocks from the ocean floor that have been moved on land. Ophiolites have been studied extensively regarding the movement of crustal rocks by plate tectonics.

The Pan-African orogeny was a series of major Neoproterozoic orogenic events which related to the formation of the supercontinents Gondwana and Pannotia about 600 million years ago. This orogeny is also known as the Pan-Gondwanan or Saldanian Orogeny. The Pan-African orogeny and the Grenville orogeny are the largest known systems of orogenies on Earth. The sum of the continental crust formed in the Pan-African orogeny and the Grenville orogeny makes the Neoproterozoic the period of Earth's history that has produced most continental crust.

<span class="mw-page-title-main">Slave Craton</span> Archaean craton in the north-western Canadian Shield, in Northwest Territories and Nunavut

The Slave Craton is an Archaean craton in the north-western Canadian Shield, in Northwest Territories and Nunavut. The Slave Craton includes the 4.03 Ga-old Acasta Gneiss which is one of the oldest dated rocks on Earth. Covering about 300,000 km2 (120,000 sq mi), it is a relatively small but well-exposed craton dominated by ~2.73–2.63 Ga greenstones and turbidite sequences and ~2.72–2.58 Ga plutonic rocks, with large parts of the craton underlain by older gneiss and granitoid units. The Slave Craton is one of the blocks that compose the Precambrian core of North America, also known as the palaeocontinent Laurentia.

<span class="mw-page-title-main">Kaapvaal Craton</span> Archaean craton, possibly part of the Vaalbara supercontinent

The Kaapvaal Craton, along with the Pilbara Craton of Western Australia, are the only remaining areas of pristine 3.6–2.5 Ga crust on Earth. Similarities of rock records from both these cratons, especially of the overlying late Archean sequences, suggest that they were once part of the Vaalbara supercontinent.

<span class="mw-page-title-main">Accretionary wedge</span> The sediments accreted onto the non-subducting tectonic plate at a convergent plate boundary

An accretionary wedge or accretionary prism forms from sediments accreted onto the non-subducting tectonic plate at a convergent plate boundary. Most of the material in the accretionary wedge consists of marine sediments scraped off from the downgoing slab of oceanic crust, but in some cases the wedge includes the erosional products of volcanic island arcs formed on the overriding plate.

<span class="mw-page-title-main">Wrangellia Terrane</span> Geological area in northwestern North America

<span class="mw-page-title-main">Wyoming Craton</span> Craton in the west-central United States and western Canada

The Wyoming Craton is a craton in the west-central United States and western Canada – more specifically, in Montana, Wyoming, southern Alberta, southern Saskatchewan, and parts of northern Utah. Also called the Wyoming Province, it is the initial core of the continental crust of North America.

<span class="mw-page-title-main">Saxothuringian Zone</span> Structural or tectonic zone in the Hercynian or Variscan orogen of central and western Europe

The Saxothuringian Zone, Saxo-Thuringian zone or Saxothuringicum is in geology a structural or tectonic zone in the Hercynian or Variscan orogen of central and western Europe. Because rocks of Hercynian age are in most places covered by younger strata, the zone is not everywhere visible at the surface. Places where it crops out are the northern Bohemian Massif, the Spessart, the Odenwald, the northern parts of the Black Forest and Vosges and the southern part of the Taunus. West of the Vosges terranes on both sides of the English Channel are also seen as part of the zone, for example the Lizard complex in Cornwall or the Léon Zone of the Armorican Massif (Brittany).

This is a list of articles related to plate tectonics and tectonic plates.

<span class="mw-page-title-main">Moldanubian Zone</span> A tectonic zone in Europe formed during the Variscan or Hercynian Orogeny

The Moldanubian Zone is in the regional geology of Europe a tectonic zone formed during the Variscan or Hercynian Orogeny. The Moldanubian Zone crops out in the Bohemian Massif and the southern part of the Black Forest and Vosges and contains the highest grade metamorphic rocks of Variscan age in Europe.

<span class="mw-page-title-main">Armorican terrane</span> Microcontinent or group of continental fragments rifted away from Gondwana

The Armorican terrane, Armorican terrane assemblage, or simply Armorica, was a microcontinent or group of continental fragments that rifted away from Gondwana towards the end of the Silurian and collided with Laurussia towards the end of the Carboniferous during the Variscan orogeny. The name is taken from Armorica, the Gaulish name for a large part of northwestern France that includes Brittany, as this matches closely to the present location of the rock units that form the main part of this terrane.

Ultra-high-pressure metamorphism refers to metamorphic processes at pressures high enough to stabilize coesite, the high-pressure polymorph of SiO2. It is important because the processes that form and exhume ultra-high-pressure (UHP) metamorphic rocks may strongly affect plate tectonics, the composition and evolution of Earth's crust. The discovery of UHP metamorphic rocks in 1984 revolutionized our understanding of plate tectonics. Prior to 1984 there was little suspicion that continental rocks could reach such high pressures.

<span class="mw-page-title-main">High pressure metamorphic terranes along the Bangong-Nujiang Suture Zone</span>

High pressure terranes along the ~1200 km long east-west trending Bangong-Nujiang suture zone (BNS) on the Tibetan Plateau have been extensively mapped and studied. Understanding the geodynamic processes in which these terranes are created is key to understanding the development and subsequent deformation of the BNS and Eurasian deformation as a whole.

<span class="mw-page-title-main">Sveconorwegian orogeny</span> Orogenic belt in southwestern Sweden and southern Norway

The Sveconorwegian orogeny was an orogenic system active 1140 to 960 million years ago and currently exposed as the Sveconorwegian orogenic belt in southwestern Sweden and southern Norway. In Norway the orogenic belt is exposed southeast of the front of the Caledonian nappe system and in nappe windows. The Sveconorwegian orogen is commonly grouped within the Grenvillian Mesoproterozoic orogens. Contrary to many other known orogenic belts the Sveconorwegian orogens eastern border does not have any known suture zone with ophiolites.

<span class="mw-page-title-main">Svecofennian orogeny</span> Geological process that resulted in formation of continental crust in Sweden, Finland and Russia

The Svecofennian orogeny is a series of related orogenies that resulted in the formation of much of the continental crust in what is today Sweden and Finland plus some minor parts of Russia. The orogenies lasted from about 2000 to 1800 million years ago during the Paleoproterozoic Era. The resulting orogen is known as the Svecofennian orogen or Svecofennides. To the west and southwest the Svecofennian orogen limits with the generally younger Transscandinavian Igneous Belt. It is assumed that the westernmost fringes of the Svecofennian orogen have been reworked by the Sveconorwegian orogeny just as the western parts of the Transscandinavian Igneous Belt has. The Svecofennian orogeny involved the accretion of numerous island arcs in such manner that the pre-existing craton grew with this new material from what is today northeast to the southwest. The accretion of the island arcs was also related to two other processes that occurred in the same period; the formation of magma that then cooled to form igneous rocks and the metamorphism of rocks.

The Superior Craton is a stable crustal block covering Quebec, Ontario, and southeast Manitoba in Canada, and northern Minnesota in the United States. It is the biggest craton among those formed during the Archean period. A craton is a large part of the Earth's crust that has been stable and subjected to very little geological changes over a long time. The size of Superior Craton is about 1,572,000 km2. The craton underwent a series of events from 4.3 to 2.57 Ga. These events included the growth, drifting and deformation of both oceanic and continental crusts.

<span class="mw-page-title-main">Central Asian Orogenic Belt</span> Phanerozoic accretionary orogen

The Central Asian Orogenic Belt (CAOB), also called the Altaids, is one of the world's largest Phanerozoic accretionary orogens, and thus a leading laboratory of geologically recent crustal growth. The orogenic belt is bounded by the East European Craton and the North China Craton in the Northwest-Southeast direction, as well as Siberia Craton and Tarim Craton in the Northeast-Southwest direction. It formed by ocean closures during Neoproterozoic to the late Phanerozoic time, from around 750 to 150 Ma. Like many other accretionary orogenic belts, the Central Asian Orogenic Belt consists of a huge amount of magmatic arcs, arc-related basins, accretionary complexes, seamounts, continental fragments and ophiolites. It is also considered a relatively distinctive collisional orogenic belt because widespread subduction-accretion complexes and arc magmatic rocks can be found in the region, but collision-related foreland basins are not common.



  1. "terrane". Merriam-Webster.com Dictionary . Retrieved 2022-10-27.
  2. "terrane". Dictionary.com Unabridged (Online). n.d. Retrieved 2023-04-02.
  3. Carney, J. N. et al. (2000). Precambrian Rocks of England and Wales, (Geological Conservation Review Series, v. 20). UK: Joint Nature Conservation Committee. ISBN   978-1861074874.
  4. "Terranes" Archived 2004-12-12 at the Wayback Machine University of British Columbia website
  5. Schematic map of the Siberian craton showing boundaries of the craton and its terranes
  6. 1 2 3 4 5 6 7 Okaya, D.; Christensen, N.I.; Ross, Z.E.; Wu, F.T. (2016). "Terrane‐controlled crustal shear wave splitting in Taiwan". Geophysical Research Letters. 43 (2): 556–563. Bibcode:2016GeoRL..43..556O. doi: 10.1002/2015GL066446 .
  7. 1 2 3 4 5 6 Aitchison, J. C., Ali, J. R., and Davis, A. M. (2007) "When and where did India and Asia collide?" Journal of Geophysical Research , v.112, pp.1–19
  8. 1 2 3 4 5 6 7 8 Mortimer, N; Rattenbury, MS; King, PR; Bland, KJ; Barrell, DJA; Bache, F; Begg, JG; Campbell, HJ; Cox, SC; Crampton, JS; Edbrooke, SW; Forsyth, PJ; Johnston, MR; Jongens, R; Lee, JM; Leonard, GS; Raine, JI; Skinner, DNB; Timm, C; Townsend, DB; Tulloch, AJ; Turnbull, IM; Turnbull, RE (2014). "High-level stratigraphic scheme for New Zealand rocks". New Zealand Journal of Geology and Geophysics. 57 (4): 402–419. doi: 10.1080/00288306.2014.946062 . ISSN   0028-8306.
  9. Pharao, et al. (1996) Tectonic map of Britain, Ireland & adjacent areas UK:British Geological Survey
  10. 1 2 3 4 Viola, G.; Henderson, I.H.C.; Bingen, B.; Hendriks, B.W.H. (2011). "The Grenvillian–Sveconorwegian orogeny in Fennoscandia: Back-thrusting and extensional shearing along the 'Mylonite Zone'". Precambrian Research . 189 (3–4): 368–88. Bibcode:2011PreR..189..368V. doi:10.1016/j.precamres.2011.06.005 . Retrieved 22 August 2015.
  11. Cuthberta, S.J.; Carswellb, D.A.; Krogh-Ravnac, E.J.; Waind, A. (2000). "Eclogites and eclogites in the Western Gneiss Region, Norwegian Caledonides". Lithos . 52 (1–4): 165–195. Bibcode:2000Litho..52..165C. doi:10.1016/s0024-4937(99)00090-0.
  12. 1 2 3 Hild, Martha; Barr, Sandra (2015). Geology of Nova Scotia. Portugal Cove: Boulder Publications. p. 18. ISBN   9781927099438.
  13. 1 2 3 4 Miller, Brent (1997). Geology, Geochronology, and Tectonic Significance of the Blair River Inlier, Northern Cape Breton Island, Nova Scotia. Halifax: Dalhousie University. p. 260.

General bibliography