Thoracic diaphragm

Last updated
Diaphragm
Respiratory system.svg
Respiratory system
Details
Origin Septum transversum, pleuroperitoneal folds, body wall [1]
Artery Pericardiacophrenic artery, musculophrenic artery, inferior phrenic arteries
Vein Superior phrenic vein, inferior phrenic vein
Nerve Phrenic and lower intercostal nerves
Identifiers
Latin diaphragma
Greek διάφραγμα
MeSH D003964
TA98 A04.4.02.001
TA2 2327
FMA 13295
Anatomical terms of muscle
Structure of diaphragm shown using a 3D medical animation still shot 3D Medical Animation Diaphragm Structure.jpg
Structure of diaphragm shown using a 3D medical animation still shot

The thoracic diaphragm, or simply the diaphragm ( /ˈdəfræm/ ; [2] Ancient Greek : διάφραγμα, romanized: diáphragma, lit. 'partition'), is a sheet of internal skeletal muscle [3] in humans and other mammals that extends across the bottom of the thoracic cavity. The diaphragm is the most important muscle of respiration, [4] and separates the thoracic cavity, containing the heart and lungs, from the abdominal cavity: as the diaphragm contracts, the volume of the thoracic cavity increases, creating a negative pressure there, which draws air into the lungs. [5] Its high oxygen consumption is noted by the many mitochondria and capillaries present; more than in any other skeletal muscle. [4]

Contents

The term diaphragm in anatomy, created by Gerard of Cremona, [6] can refer to other flat structures such as the urogenital diaphragm or pelvic diaphragm, but "the diaphragm" generally refers to the thoracic diaphragm. In humans, the diaphragm is slightly asymmetric—its right half is higher up (superior) to the left half, since the large liver rests beneath the right half of the diaphragm. There is also speculation that the diaphragm is lower on the other side due to heart's presence.

Other mammals have diaphragms, and other vertebrates such as amphibians and reptiles have diaphragm-like structures, but important details of the anatomy may vary, such as the position of the lungs in the thoracic cavity.

Structure

Definition of diaphragm in Blount's 1707 Glossographia Anglicana Nova Diaphragm def 1707.png
Definition of diaphragm in Blount's 1707 Glossographia Anglicana Nova

The diaphragm is an upward curved, c-shaped structure of muscle and fibrous tissue that separates the thoracic cavity from the abdomen. The superior surface of the dome forms the floor of the thoracic cavity, and the inferior surface the roof of the abdominal cavity. [7]

As a dome, the diaphragm has peripheral attachments to structures that make up the abdominal and chest walls. The muscle fibres from these attachments converge in a central tendon, which forms the crest of the dome. [7] Its peripheral part consists of muscular fibers that take origin from the circumference of the inferior thoracic aperture and converge to be inserted into a central tendon.

The muscle fibres of the diaphragm radiate outward from the central tendon. While the diaphragm is one muscle, it is composed of two distinct muscle regions: the costal, which serves as the driver in the work of breathing, and crural diaphragm, which serves as an "anchor;" attaching the muscle to the lower ribs and lumbar vertebrae. The costal diaphragm is further divided into ventral, medial, and dorsal costal portions. [8] [9]

The vertebral part of the diaphragm arises from the crura and arcuate ligaments. Right crus arises from L1-L3 vertebral bodies and their intervertebral discs. Smaller left crus arises from L1, L2 vertebral bodies and their intervertebral discs. [8] [7] [10] Medial arcuate ligament arises from the fascia thickening from body of L2 vertebrae to transverse process of L1 vertebrae, crossing over the body of the psoas major muscle. The lateral arcuate ligament arises from the transverse process of L1 vertebrae and is attached laterally to the 12th rib. The lateral arcuate ligament also arises from fascia thickening that covers the quadratus lumborum muscle. The median arcuate ligament arises from the fibrous parts of right and left crura where descending thoracic aorta passes behind it. No diaphramatic muscle arises from the median arcuate ligament. [8] Both adrenal glands lie near the diaphragmatic crus and arcuate ligament. [11]

The costal part of diaphragm arises from the lower four ribs (7 to 10) costal cartilages. [8]

The central tendon of the diaphragm is a thin but strong aponeurosis near the center of the vault formed by the muscle, closer to the front than to the back of the thorax. The central part of the tendon is attached above to pericardium. The both sides of the posterior fibres are attached to paracolic gutters (the curving of ribs before attaching to both sides of the vertebral bodies). [8]

Openings

Human diaphragm, transverse view from below, showing openings 1113 The Diaphragm.jpg
Human diaphragm, transverse view from below, showing openings

There are a number of openings in the diaphragm through which structures pass between the thorax and abdomen. There are three large openings — one for the aorta (aortic hiatus), [3] one for the esophagus (esophageal hiatus), and one for the inferior vena cava (the caval opening), [8] as well as a series of smaller openings. [12] [13]

The inferior vena cava passes through the caval opening, a quadrilateral opening at the junction of the right and middle leaflets of the central tendon, so that its margins are tendinous. Surrounded by tendons, the opening is stretched open every time inspiration occurs. However, there has been argument that the caval opening actually constricts during inspiration. Since thoracic pressure decreases upon inspiration and draws the caval blood upwards toward the right atrium, increasing the size of the opening allows more blood to return to the heart, maximizing the efficacy of lowered thoracic pressure returning blood to the heart. The aorta does not pierce the diaphragm but rather passes behind it in between the left and right crus.[ citation needed ]

There are several structures that pierce through the diaphragm, including: left phrenic nerve pierces through the central tendon, greater, lesser, and least thoracic splanchnic nerves pierces through bilateral crura, and lymphatic vessels that pierce throughout the diaphragam, especially behind the diaphragm. [8]

Nerve supply

The diaphragm is primarily innervated by the phrenic nerve which is formed from the cervical nerves C3, C4 and C5. [7] While the central portion of the diaphragm sends sensory afferents via the phrenic nerve, the peripheral portions of the diaphragm send sensory afferents via the intercostal (T5–T11) [8] and subcostal nerves (T12).[ citation needed ]

Blood supply

Gray577.png

Arteries and veins above and below the diaphragm supply and drain blood.

From above, the diaphragm receives blood from branches of the internal thoracic arteries, namely the pericardiacophrenic artery and musculophrenic artery; from the superior phrenic arteries, which arise directly from the thoracic aorta; and from the lower internal intercostal arteries. From below, the inferior phrenic arteries supply the diaphragm. [7]

The diaphragm drains blood into the brachiocephalic veins, azygos veins, and veins that drain into the inferior vena cava and left suprarenal vein. [7]

Variation

The sternal portion of the muscle is sometimes wanting and more rarely defects occur in the lateral part of the central tendon or adjoining muscle fibers.

Development

The thoracic diaphragm develops during embryogenesis, beginning in the third week after fertilization with two processes known as transverse folding and longitudinal folding. The septum transversum, the primitive central tendon of the diaphragm, originates at the rostral pole of the embryo and is relocated during longitudinal folding to the ventral thoracic region. Transverse folding brings the body wall anteriorly to enclose the gut and body cavities. The pleuroperitoneal membrane and body wall myoblasts, from somatic lateral plate mesoderm, meet the septum transversum to close off the pericardio-peritoneal canals on either side of the presumptive esophagus, forming a barrier that separates the peritoneal and pleuropericardial cavities. Furthermore, dorsal mesenchyme surrounding the presumptive esophagus form the muscular crura of the diaphragm.

Because the earliest element of the embryological diaphragm, the septum transversum, forms in the cervical region, the phrenic nerve that innervates the diaphragm originates from the cervical spinal cord (C3,4, and 5). As the septum transversum descends inferiorly, the phrenic nerve follows, accounting for its circuitous route from the upper cervical vertebrae, around the pericardium, finally to innervate the diaphragm.

Function

Real-time magnetic resonance imaging showing effects of diaphragm movement during breathing

The diaphragm is the main muscle of respiration and functions in breathing. During inhalation, the diaphragm contracts and moves in the inferior direction, enlarging the volume of the thoracic cavity and reducing intra-thoracic pressure (the external intercostal muscles also participate in this enlargement), forcing the lungs to expand. In other words, the diaphragm's movement downwards creates a partial vacuum in the thoracic cavity, which forces the lungs to expand to fill the void, drawing air in the process.

Cavity expansion happens in two extremes, along with intermediary forms. When the lower ribs are stabilized and the central tendon of the diaphragm is mobile, a contraction brings the insertion (central tendon) towards the origins and pushes the lower cavity towards the pelvis, allowing the thoracic cavity to expand downward. This is often called belly breathing. When the central tendon is stabilized and the lower ribs are mobile, a contraction lifts the origins (ribs) up towards the insertion (central tendon) which works in conjunction with other muscles to allow the ribs to slide and the thoracic cavity to expand laterally and upwards.

When the diaphragm relaxes (moves in the superior direction), air is exhaled by elastic recoil process of the lung and the tissues lining the thoracic cavity. Assisting this function with muscular effort (called forced exhalation) involves the internal intercostal muscles used in conjunction with the abdominal muscles, which act as an antagonist paired with the diaphragm's contraction. Diaphragm dysfunction is a well-known factor associated with various complications in patients, such as prolonged respiratory failure, difficulties in weaning from mechanical ventilation, extended hospitalization, increased morbidity, and mortality. [15] Studies have reported that a thin diaphragm leads to greater lung compliance, which can contribute to respiratory failure. Furthermore, reduction in diaphragm thickness during the early stages of disease can serve as a prognostic marker in sepsis patients, COVID-19 patients. [16] [17]

The diaphragm is also involved in non-respiratory functions. It helps to expel vomit, feces, and urine from the body by increasing intra-abdominal pressure, aids in childbirth, [18] and prevents acid reflux by exerting pressure on the esophagus as it passes through the esophageal hiatus.

In some non-human animals, the diaphragm is not crucial for breathing; a cow, for instance, can survive fairly asymptomatically with diaphragmatic paralysis as long as no massive aerobic metabolic demands are made of it. [ citation needed ]

Clinical significance

Paralysis

If either the phrenic nerve, cervical spine or brainstem is damaged, this will sever the nervous supply to the diaphragm. The most common damage to the phrenic nerve is by bronchial cancer, which usually only affects one side of the diaphragm. Other causes include Guillain–Barré syndrome and systemic lupus erythematosus. [19]

Herniation

A hiatus hernia is a hernia common in adults in which parts of the lower esophagus or stomach that are normally in the abdomen pass/bulge abnormally through the diaphragm and are present in the thorax. Hernias are described as rolling, in which the hernia is beside the oesophagus, or sliding, in which the hernia directly involves the esophagus. These hernias are implicated in the development of reflux, as the different pressures between the thorax and abdomen normally act to keep pressure on the esophageal hiatus. With herniation, this pressure is no longer present, and the angle between the cardia of the stomach and the oesophagus disappear. Not all hiatus hernias cause symptoms however, although almost all people with Barrett's oesophagus or oesophagitis have a hiatus hernia. [19]

Hernias may also occur as a result of congenital malformation, a congenital diaphragmatic hernia. When the pleuroperitoneal membranes fail to fuse, the diaphragm does not act as an effective barrier between the abdomen and thorax. Herniation is usually of the left, and commonly through the posterior lumbocostal triangle, although rarely through the anterior foramen of Morgagni. The contents of the abdomen, including the intestines, may be present in the thorax, which may impact development of the growing lungs and lead to hypoplasia. [20] This condition is present in 0.8 - 5/10,000 births. [21] A large herniation has high mortality rate, and requires immediate surgical repair. [22]

Imaging

X-ray of chest, showing top of diaphragm. Chest labeled.png
X-ray of chest, showing top of diaphragm.

Due to its position separating the thorax and abdomen, fluid abnormally present in the thorax, or air abnormally present in the abdomen, may collect on one side of the diaphragm. An X-ray may reveal this. Pleural effusion, in which there is fluid abnormally present between the two pleurae of the lungs, is detected by an X-ray of the chest, showing fluid collecting in the angle between the ribs and diaphragm. [19] An X-ray may also be used to reveal a pneumoperitoneum, in which there is gas in the abdomen.

An X-ray may also be used to check for herniation. [20]

Significance in strength training

The adoption of a deeper breathing pattern typically occurs during physical exercise in order to facilitate greater oxygen absorption. During this process the diaphragm more consistently adopts a lower position within the body's core. In addition to its primary role in breathing, the diaphragm also plays a secondary role in strengthening the posture of the core. This is especially evident during deep breathing where its generally lower position increases intra-abdominal pressure, which serves to strengthen the lumbar spine. [23] [ better source needed ]

The key to real core stabilization is to maintain the increased IAP while going through normal breathing cycles. [...] The diaphragm then performs its breathing function at a lower position to facilitate a higher IAP. [23]

[ better source needed ]

Therefore, if a person's diaphragm position is lower in general, through deep breathing, then this assists the strengthening of their core during that period. This can be an aid in strength training and other forms of athletic endeavour. For this reason, taking a deep breath or adopting a deeper breathing pattern is typically recommended when lifting heavy weights.

Other animals

Diaphragm and pleural cavities in amphibian (left), bird (center), mammal (right). a, mandible; b, genio-hyoid; c, hyoid; d, sterno-hyoid; e, sternum; f, pericardium; g, septum transversum; h, rectus abdominis; i, abdominal cavity; j, pubis; k, esophagus; l, trachea; m, cervical limiting membrane of abdominal cavity; n, dorsal wall of body; o, lung; o', air-sac. Diaphragm Arthur Keith 1.jpg
Diaphragm and pleural cavities in amphibian (left), bird (center), mammal (right). a, mandible; b, genio-hyoid; c, hyoid; d, sterno-hyoid; e, sternum; f, pericardium; g, septum transversum; h, rectus abdominis; i, abdominal cavity; j, pubis; k, esophagus; l, trachea; m, cervical limiting membrane of abdominal cavity; n, dorsal wall of body; o, lung; o', air-sac.

The existence of a membrane separating the pharynx from the stomach can be traced widely among the chordates. Thus the model organism, the marine chordate lancelet, possesses an atriopore by which water exits the pharynx, which has been claimed (and disputed) to be homologous to structures in ascidians and hagfishes. [25] The tunicate epicardium separates digestive organs from the pharynx and heart, but the anus returns to the upper compartment to discharge wastes through an outgoing siphon.

Thus the diaphragm emerges in the context of a body plan that separated an upper feeding compartment from a lower digestive tract, but the point at which it originates is a matter of definition. Structures in fish, amphibians, reptiles, and birds have been called diaphragms, but it has been argued that these structures are not homologous. For instance, the alligator diaphragmaticus muscle does not insert on the esophagus and does not affect pressure of the lower esophageal sphincter. [26] The lungs are located in the abdominal compartment of amphibians and reptiles, so that contraction of the diaphragm expels air from the lungs rather than drawing it into them. In birds and mammals, lungs are located above the diaphragm. The presence of an exceptionally well-preserved fossil of Sinosauropteryx , with lungs located beneath the diaphragm as in crocodiles, has been used to argue that dinosaurs could not have sustained an active warm-blooded physiology, or that birds could not have evolved from dinosaurs.[ citation needed ] An explanation for this (put forward in 1905), is that lungs originated beneath the diaphragm, but as the demands for respiration increased in warm-blooded birds and mammals, natural selection came to favor the parallel evolution of the herniation of the lungs from the abdominal cavity in both lineages. [24]

However, birds do not have diaphragms. They do not breathe in the same way as mammals and do not rely on creating a negative pressure in the thoracic cavity, at least not to the same extent. They rely on a rocking motion of the keel of the sternum to create local areas of reduced pressure to supply thin, membranous airsacs cranially and caudally to the fixed-volume, non-expansive lungs. A complicated system of valves and air sacs cycles air constantly over the absorption surfaces of the lungs so allowing maximal efficiency of gaseous exchange. Thus, birds do not have the reciprocal tidal breathing flow of mammals. On careful dissection, around eight air sacs can be clearly seen. They extend quite far caudally into the abdomen. [27]

See also

Related Research Articles

<span class="mw-page-title-main">Rib</span> Long bone in vertebrates that protects vital respiratory and cardiovascular organs

In vertebrate anatomy, ribs are the long curved bones which form the rib cage, part of the axial skeleton. In most tetrapods, ribs surround the chest, enabling the lungs to expand and thus facilitate breathing by expanding the chest cavity. They serve to protect the lungs, heart, and other internal organs of the thorax. In some animals, especially snakes, ribs may provide support and protection for the entire body.

<span class="mw-page-title-main">Rib cage</span> Bone structure that protects the vital organs and major blood vessels

The rib cage is an endoskeletal enclosure in the thorax of most vertebrate animals that comprises the ribs, vertebral column and sternum, which protects vital organs such as the heart, lungs and great vessels. The circumferential enclosure formed by left and right rib cages, together known as the thoracic cage, is a semi-rigid bony and cartilaginous structure which surrounds the thoracic cavity and supports the shoulder girdles to form the core part of the axial skeleton.

<span class="mw-page-title-main">Thoracic cavity</span> Chamber of the body of vertebrates that is protected by the rib cage

The thoracic cavity is the chamber of the body of vertebrates that is protected by the thoracic wall. The central compartment of the thoracic cavity is the mediastinum. There are two openings of the thoracic cavity, a superior thoracic aperture known as the thoracic inlet and a lower inferior thoracic aperture known as the thoracic outlet.

<span class="mw-page-title-main">Thorax</span> Frontal part of an animals body, between its head and abdomen

The thorax or chest is a part of the anatomy of mammals and other tetrapod animals located between the neck and the abdomen. In insects, crustaceans, and the extinct trilobites, the thorax is one of the three main divisions of the creature's body, each of which is in turn composed of multiple segments.

<span class="mw-page-title-main">Phrenic nerve</span> Nerve controlling the diaphragm

The phrenic nerve is a mixed motor/sensory nerve that originates from the C3-C5 spinal nerves in the neck. The nerve is important for breathing because it provides exclusive motor control of the diaphragm, the primary muscle of respiration. In humans, the right and left phrenic nerves are primarily supplied by the C4 spinal nerve, but there is also a contribution from the C3 and C5 spinal nerves. From its origin in the neck, the nerve travels downward into the chest to pass between the heart and lungs towards the diaphragm.

<span class="mw-page-title-main">Subclavian artery</span> Major arteries of the upper thorax, below the clavicle

In human anatomy, the subclavian arteries are paired major arteries of the upper thorax, below the clavicle. They receive blood from the aortic arch. The left subclavian artery supplies blood to the left arm and the right subclavian artery supplies blood to the right arm, with some branches supplying the head and thorax. On the left side of the body, the subclavian comes directly off the aortic arch, while on the right side it arises from the relatively short brachiocephalic artery when it bifurcates into the subclavian and the right common carotid artery.

<span class="mw-page-title-main">Abdominal aorta</span> Largest artery in the abdomen

In human anatomy, the abdominal aorta is the largest artery in the abdominal cavity. As part of the aorta, it is a direct continuation of the descending aorta.

<span class="mw-page-title-main">Abdominal external oblique muscle</span> Skeletal muscle in the abdomen

The abdominal external oblique muscle is the largest and outermost of the three flat abdominal muscles of the lateral anterior abdomen.

<span class="mw-page-title-main">Thoracic aorta</span> Part of the aorta located in the thorax

The thoracic aorta is a part of the aorta located in the thorax. It is a continuation of the aortic arch. It is located within the posterior mediastinal cavity, but frequently bulges into the left pleural cavity. The descending thoracic aorta begins at the lower border of the fourth thoracic vertebra and ends in front of the lower border of the twelfth thoracic vertebra, at the aortic hiatus in the diaphragm where it becomes the abdominal aorta.

<span class="mw-page-title-main">Abdomen</span> Part of the body between the chest and pelvis

The abdomen is the part of the body between the thorax (chest) and pelvis, in humans and in other vertebrates. The abdomen is the front part of the abdominal segment of the torso. The area occupied by the abdomen is called the abdominal cavity. In arthropods, it is the posterior tagma of the body; it follows the thorax or cephalothorax.

<span class="mw-page-title-main">Inferior epigastric artery</span> Blood vessel

In human anatomy, the inferior epigastric artery is an artery that arises from the external iliac artery. It is accompanied by the inferior epigastric vein; inferiorly, these two inferior epigastric vessels together travel within the lateral umbilical fold The inferior epigastric artery then traverses the arcuate line of rectus sheath to enter the rectus sheath, then anastomoses with the superior epigastric artery within the rectus sheath.

<span class="mw-page-title-main">Inferior phrenic arteries</span>

The inferior phrenic artery is a bilaterally paired artery of the abdominal cavity which represents the main source of arterial supply to the diaphragm. Each artery usually arises either from the coeliac trunk or the abdominal aorta, however, their origin is highly variable and the different sites of origin are different for the left artery and right artery. The superior suprarenal artery is a branch of the inferior phrenic artery.

<span class="mw-page-title-main">Central tendon of diaphragm</span>

The central tendon of the diaphragm is a thin but strong aponeurosis situated slightly anterior to the vault formed by the muscle, resulting in longer posterior muscle fibers.

<span class="mw-page-title-main">Esophageal hiatus</span>

In human anatomy, the esophageal hiatus is an opening in the diaphragm through which the esophagus and the vagus nerve pass.

<span class="mw-page-title-main">Lumbocostal triangle</span>

The lumbocostal triangle is a space between the costal and lumbar parts of the diaphragm. The base of this triangular space is formed by muscle attachments originating from the XII rib and muscle fibers attaching to the lateral arcuate ligament. The apex of the triangle is oriented towards the tendinous centre of the diaphragm. Parietal pleura and renal capsule are in contact in this space, so possible infection can be transmitted through this space.

<span class="mw-page-title-main">Bochdalek hernia</span> Medical condition

Bochdalek hernia is one of two forms of a congenital diaphragmatic hernia, the other form being Morgagni hernia. A Bochdalek hernia is a congenital abnormality in which an opening exists in the infant's diaphragm, allowing normally intra-abdominal organs to enter into the thoracic cavity. In the majority of people, the affected lung will be deformed, and the resulting lung compression can be life-threatening. Bochdalek hernias occur more commonly on the posterior left side.

<span class="mw-page-title-main">Muscles of respiration</span> Muscles involved in breathing

The muscles of respiration are the muscles that contribute to inhalation and exhalation, by aiding in the expansion and contraction of the thoracic cavity. The diaphragm and, to a lesser extent, the intercostal muscles drive respiration during quiet breathing. The elasticity of these muscles is crucial to the health of the respiratory system and to maximize its functional capabilities.

<span class="mw-page-title-main">Outline of human anatomy</span> Overview of and topical guide to human anatomy

The following outline is provided as an overview of and topical guide to human anatomy:

<span class="mw-page-title-main">Diaphragmatic rupture</span> Tear in the thoracic diaphragm, usually caused by physical trauma

Diaphragmatic rupture is a tear of the diaphragm, the muscle across the bottom of the ribcage that plays a crucial role in breathing. Most commonly, acquired diaphragmatic tears result from physical trauma. Diaphragmatic rupture can result from blunt or penetrating trauma and occurs in about 0.5% of all people with trauma.

<span class="mw-page-title-main">Pulmonary pleurae</span> Membrane lining the thoracic cavity wall

The pulmonary pleurae are the two flattened sacs ensheathing each lung, locally appearing as two opposing layers of serous membrane separating the lungs from the mediastinum and the inside surfaces of the surrounding chest walls.

References

PD-icon.svgThis article incorporates text in the public domain from page 404 of the 20th edition of Gray's Anatomy (1918)

  1. mslimb-012 —Embryo Images at University of North Carolina
  2. "Definition of 'diaphragm'". collinsdictionary.com .
  3. 1 2 Campbell NA (2009). Biology: Australian Version (8th ed.). Sydney: Pearson/Benjamin Cumings. p. 334. ISBN   978-1-4425-0221-5.
  4. 1 2 Spencer's pathology of the lung (5th ed.). New York: McGraw-Hill. 1996. p. 1. ISBN   0071054480.
  5. "Medical Illustrations and Animations, Health and Science Stock Images and Videos, Royalty Free Licensing at Alila Medical Media". www.alilamedicalmedia.com.[ full citation needed ]
  6. Arráez-Aybar LA, Bueno-López JL, Raio N (March 2015). "Toledo School of Translators and their influence on anatomical terminology". Annals of Anatomy - Anatomischer Anzeiger. 198: 21–33. doi:10.1016/j.aanat.2014.12.003. PMID   25667112.
  7. 1 2 3 4 5 6 7 8 9 Drake RL, Vogl W, Tibbitts AW (2005). Gray's anatomy for students. illustrations by Richardson PR. Philadelphia: Elsevier/Churchill Livingstone. pp. 134–135. ISBN   978-0-8089-2306-0.
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 Ryan S (2011). "Chapter 3". Anatomy for diagnostic imaging (Third ed.). Elsevier Ltd. p. 117. ISBN   9780702029714.
  9. Poole, David (1 June 1997). "Diaphragm structure and function in health and disease". Medicine and Science in Sports and Exercise. 29 (6): 738–754. doi: 10.1097/00005768-199706000-00003 . PMID   9219201 . Retrieved 29 November 2023.
  10. Moore K (2014). Clinically Oriented Anatomy (7th ed.). Baltimore: Walters Kluwer. p. 306.
  11. Perrier ND, Boger MS (5 December 2005). "2: Surgical Anatomy". Adrenal Glands: Diagnostic Aspects and Surgical Therapy (PDF). Springer Science & Business Media. ISBN   9783540268611. Archived from the original (PDF) on 3 March 2022. Retrieved 3 March 2022.
  12. Sinnatamby CS (2011). Last's Anatomy (12th ed.). Elsevier Australia. p. 186. ISBN   978-0-7295-3752-0.
  13. 1 2 Moore KL, Dalley AF, Agur AM (2017). Essential Clinical Anatomy. Lippincott Williams & Wilkins. p. 536. ISBN   978-1496347213.
  14. 1 2 Nason LK, Walker CM, McNeeley MF, Burivong W, Fligner CL, Godwin JD (March 2012). "Imaging of the diaphragm: anatomy and function". Radiographics. 32 (2): E51–E70. doi:10.1148/rg.322115127. PMID   22411950.
  15. Supinski GS, Morris PE, Dhar S, Callahan LA (April 2018). "Diaphragm Dysfunction in Critical Illness". Chest. 153 (4): 1040–1051. doi:10.1016/j.chest.2017.08.1157. PMC   6026291 . PMID   28887062.
  16. Corradi F, Isirdi A, Malacarne P, Santori G, Barbieri G, Romei C, et al. (April 2021). "Low diaphragm muscle mass predicts adverse outcome in patients hospitalized for COVID-19 pneumonia: an exploratory pilot study". Minerva Anestesiologica. 87 (4): 432–438. doi:10.23736/S0375-9393.21.15129-6. PMID   33594871. S2CID   263501203.
  17. Emekli E, Bostancı Can EZ (April 2023). "Prognostic Value of Diaphragm Diameter, Muscle Volume, and Bone Mineral Density in Critically Ill COVID-19 Patients". Journal of Intensive Care Medicine. 38 (9): 847–855. doi:10.1177/08850666231169494. PMC   10099913 . PMID   37050868.
  18. Mazumdar MD. "Stage II Of Normal Labour". Gynaeonline. Archived from the original on 24 February 2010. Retrieved June 12, 2018.
  19. 1 2 3 Colledge NR, Walker BR, Ralston SH, eds. (2010). Davidson's principles and practice of medicine (21st ed.). Edinburgh: Churchill Livingstone/Elsevier. pp. 644, 658–659, 864. ISBN   978-0-7020-3085-7.
  20. 1 2 Hay WW, ed. (2011). Current diagnosis & treatment : pediatrics (20th ed.). New York: McGraw-Hill Medical. p.  602. ISBN   978-0-07-166444-8.
  21. Chandrasekharan PK, Rawat M, Madappa R, Rothstein DH, Lakshminrusimha S (2017-03-11). "Congenital Diaphragmatic hernia - a review". Maternal Health, Neonatology and Perinatology. 3: 6. doi: 10.1186/s40748-017-0045-1 . PMC   5356475 . PMID   28331629.
  22. Nguyen L, Guttman FM, De Chadarévian JP, Beardmore HE, Karn GM, Owen HF, Murphy DR (December 1983). "The mortality of congenital diaphragmatic hernia. Is total pulmonary mass inadequate, no matter what?". Annals of Surgery. 198 (6): 766–770. doi:10.1097/00000658-198312000-00016. PMC   1353227 . PMID   6639179.
  23. 1 2 "Diaphragm function for core stability » Hans Lindgren DC". hanslindgren.com.
  24. 1 2 Keith A (1905). "The nature of the mammalian diaphragm and pleural cavities". Journal of Anatomy and Physiology. 39 (Pt 3): 243–284. PMC   1287418 . PMID   17232638.
  25. Kozmik Z, Holland ND, Kalousova A, Paces J, Schubert M, Holland LZ (March 1999). "Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region". Development. 126 (6): 1295–1304. doi:10.1242/dev.126.6.1295. PMID   10021347.
  26. Uriona TJ, Farmer CG, Dazely J, Clayton F, Moore J (August 2005). "Structure and function of the esophagus of the American alligator (Alligator mississippiensis)". The Journal of Experimental Biology. 208 (Pt 16): 3047–3053. doi: 10.1242/jeb.01746 . PMID   16081603.
  27. Dyce KM, Sack WO, Wensing CJ (2002). Textbook of Veterinary Anatomy (3rd ed.). Philiadelphia: Saunders.

PD-icon.svg This article incorporates text from a publication now in the public domain :  Chambers, Ephraim, ed. (1728). Cyclopædia, or an Universal Dictionary of Arts and Sciences (1st ed.). James and John Knapton, et al.{{cite encyclopedia}}: Missing or empty |title= (help)