Three-point cross

Last updated

In genetics, a three-point cross is used to determine the loci of three genes in an organism's genome.

Genetics Science of genes, heredity, and variation in living organisms

Genetics is a branch of biology concerned with the study of genes, genetic variation, and heredity in organisms.

Locus (genetics) location of a gene at a chromosome

A locus in genetics is a fixed position on a chromosome, like the position of a gene or a marker. Each chromosome carries many genes; human's estimated 'haploid' protein coding genes are 19,000–20,000, on the 23 different chromosomes. A variant of the similar DNA sequence located at a given locus is called an allele. The ordered list of loci known for a particular genome is called a gene map. Gene mapping is the process of determining the locus for a particular biological trait.

Genome entirety of an organisms hereditary information; genome of organism (encoded by the genomic DNA) is the (biological) information of heredity which is passed from one generation of organism to the next; is transcribed to produce various RNAs

In the fields of molecular biology and genetics, a genome is the genetic material of an organism. It consists of DNA. The genome includes both the genes and the noncoding DNA, as well as mitochondrial DNA and chloroplast DNA. The study of the genome is called genomics.

An individual heterozygous for three mutations is crossed with a homozygous recessive individual, and the phenotypes of the progeny are scored. The two most common phenotypes that result are the parental gametes; the two least common phenotypes that result come from a double crossover in gamete formation. By comparing the parental and double-crossover phenotypes, the geneticist can determine which gene is located between the others on the chromosome.

Offspring in biology, the product of reproduction of an organism

In biology, offspring are the young born of living organisms, produced either by a single organism or, in the case of sexual reproduction, two organisms. Collective offspring may be known as a brood or progeny in a more general way. This can refer to a set of simultaneous offspring, such as the chicks hatched from one clutch of eggs, or to all the offspring, as with the honeybee.

Chromosomal crossover

Chromosomal crossover is the exchange of genetic material between 2 homologous chromosomes non-sister chromatids that results in recombinant chromosomes during sexual reproduction. It is one of the final phases of genetic recombination, which occurs in the pachytene stage of prophase I of meiosis during a process called synapsis. Synapsis begins before the synaptonemal complex develops and is not completed until near the end of prophase I. Crossover usually occurs when matching regions on matching chromosomes break and then reconnect to the other chromosome.

Meiosis One of the two nuclear divisions that occur as part of the meiotic cell cycle.

Meiosis is a special type of cell division that reduces the chromosome number by half, creating four haploid cells, each genetically distinct from the parent cell that gave rise to them. This process occurs in all sexually reproducing single-celled and multicellular eukaryotes, including animals, plants, and fungi. Errors in meiosis resulting in aneuploidy are the leading known cause of miscarriage and the most frequent genetic cause of developmental disabilities.

The recombinant frequency is the ratio of non-parental phenotypes to total individuals. It is expressed as a percentage, which is equivalent to the number of map units (or centiMorgans) between two genes. For example, if 100 out of 1000 individuals display the phenotype resulting from a crossover between genes a and b, then the recombination frequency is 10 percent and genes a and b are 10 map-units apart on the chromosome.

Percentage number or ratio as a fraction of 100,parts per 100

In mathematics, a percentage is a number or ratio expressed as a fraction of 100. It is often denoted using the percent sign, "%", or the abbreviations "pct.", "pct"; sometimes the abbreviation "pc" is also used. A percentage is a dimensionless number.

In genetics, a centimorgan or map unit (m.u.) is a unit for measuring genetic linkage. It is defined as the distance between chromosome positions for which the expected average number of intervening chromosomal crossovers in a single generation is 0.01. It is often used to infer distance along a chromosome. However, it is not a true physical distance.

If the recombination frequency is greater than 50 percent, it means that the genes are unlinked - they are either located on different chromosomes or are sufficiently distant from each other on the same chromosome. Any recombination frequency greater than 50 percent is expressed as exactly 50 percent because, being unlinked, they are equally as likely as not to be separated during gamete formation.

Related Research Articles

Gamete haploid cell that fuses with another haploid cell during fertilization (conception) in organisms that sexually reproduce

A gamete is a haploid cell that fuses with another haploid cell during fertilization (conception) in organisms that sexually reproduce. In species that produce two morphologically distinct types of gametes, and in which each individual produces only one type, a female is any individual that produces the larger type of gamete—called an ovum —and a male produces the smaller tadpole-like type—called a sperm. In short a gamete is an egg or a sperm. This is an example of anisogamy or heterogamy, the condition in which females and males produce gametes of different sizes. In contrast, isogamy is the state of gametes from both sexes being the same size and shape, and given arbitrary designators for mating type. The name gamete was introduced by the Austrian biologist Gregor Mendel. Gametes carry half the genetic information of an individual, one ploidy of each type, and are created through meiosis.

Mendelian inheritance law of segregation

Mendelian inheritance is a type of biological inheritance that follows the laws originally proposed by Gregor Mendel in 1865 and 1866 and re-discovered in 1900. These laws were initially controversial. When Mendel's theories were integrated with the Boveri–Sutton chromosome theory of inheritance by Thomas Hunt Morgan in 1915, they became the core of classical genetics. Ronald Fisher combined these ideas with the theory of natural selection in his 1930 book The Genetical Theory of Natural Selection, putting evolution onto a mathematical footing and forming the basis for population genetics within the modern evolutionary synthesis.

Dominance (genetics) relationship between alleles of a gene, in which the phenotypic effect of one allele masks the phenotypic effect (phenotype) of another allele at the same locus

Dominance in genetics is a relationship between alleles of one gene, in which the effect on phenotype of one allele masks the contribution of a second allele at the same locus. The first allele is dominant and the second allele is recessive. For genes on an autosome, the alleles and their associated traits are autosomal dominant or autosomal recessive. Dominance is a key concept in Mendelian inheritance and classical genetics. Often the dominant allele codes for a functional protein whereas the recessive allele does not.

Genetic recombination The production of offspring with combinations of traits that differ from those found in either parent

Genetic recombination is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryotes, genetic recombination during meiosis can lead to a novel set of genetic information that can be passed on from the parents to the offspring. Most recombination is naturally occurring.

Genetic linkage is the tendency of DNA sequences that are close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction. Two genetic markers that are physically near to each other are unlikely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be more linked than markers that are far apart. In other words, the nearer two genes are on a chromosome, the lower the chance of recombination between them, and the more likely they are to be inherited together. Markers on different chromosomes are perfectly unlinked.

A genetic screen or mutagenesis screen is an experimental technique used to identify and select for individuals who possess a phenotype of interest in a mutagenized population. Hence a genetic screen is a type of phenotypic screen. Genetic screens can provide important information on gene function as well as the molecular events that underlie a biological process or pathway. While genome projects have identified an extensive inventory of genes in many different organisms, genetic screens can provide valuable insight as to how those genes function.

Punnett square diagram used to predict the possible outcomes of a breeding experiment, and their respective likelihoods

The Punnett square is a square diagram that is used to predict the genotypes of a particular cross or breeding experiment. It is named after Reginald C. Punnett, who devised the approach. The diagram is used by biologists to determine the probability of an offspring having a particular genotype. The Punnett square is a tabular summary of possible combinations of maternal alleles with paternal alleles. These tables can be used to examine the genotypical outcome probabilities of the offspring of a single trait (allele), or when crossing multiple traits from the parents. The Punnett Square is a visual representation of Mendelian inheritance. It is important to understand the terms "heterozygous", "homozygous", "double heterozygote", "dominant allele" and "recessive allele" when using the Punnett square method. For multiple traits, using the "forked-line method" is typically much easier than the Punnett square. Phenotypes may be predicted with at least better-than-chance accuracy using a Punnett square, but the phenotype that may appear in the presence of a given genotype can in some instances be influenced by many other factors, as when polygenic inheritance and/or epigenetics are at work.

Non-Mendelian inheritance

Non-Mendelian inheritance is any pattern of inheritance in which traits do not segregate in accordance with Mendel's laws. These laws describe the inheritance of traits linked to single genes on chromosomes in the nucleus. In Mendelian inheritance, each parent contributes one of two possible alleles for a trait. If the genotypes of both parents in a genetic cross are known, Mendel’s laws can be used to determine the distribution of phenotypes expected for the population of offspring. There are several situations in which the proportions of phenotypes observed in the progeny do not match the predicted values. Non-Mendelian Inheritance is applicable in co-dominance and incomplete dominace.

Test cross

In genetics, a test cross, first introduced by Gregor Mendel, involves the breeding of an individual with a phenotypically recessive individual, in order to determine the zygosity of the former by analyzing proportions of offspring phenotypes. Zygosity can either be heterozygous or homozygous. Those that are heterozygous have one dominant and one recessive allele. Individuals that are homozygous dominant have two dominant alleles, and those that are homozygous recessive have two recessive alleles.

Mitotic recombination is a type of genetic recombination that may occur in somatic cells during their preparation for mitosis in both sexual and asexual organisms. In asexual organisms, the study of mitotic recombination is one way to understand genetic linkage because it is the only source of recombination within an individual. Additionally, mitotic recombination can result in the expression of recessive genes in an otherwise heterozygous individual. This expression has important implications for the study of tumorigenesis and lethal recessive genes. Mitotic homologous recombination occurs mainly between sister chromatids subsequent to replication. Inter-sister homologous recombination is ordinarily genetically silent. During mitosis the incidence of recombination between non-sister homologous chromatids is only about 1% of that between sister chromatids.

In genetics, complete linkage is defined as the state in which two loci are so close together that alleles of these loci are virtually never separated by crossing over. The closer the physical location of two genes on the DNA, the less likely they are to be separated by a crossing-over event. In the case of male Drosophila there is complete absence of recombinant types due to absence of crossing over. This means that all of the genes that start out on a single chromosome, will end up on that same chromosome in their original configuration. In the absence of recombination, only parental phenotypes are expected.

Marker assisted selection or marker aided selection (MAS) is an indirect selection process where a trait of interest is selected based on a marker linked to a trait of interest, rather than on the trait itself. This process has been extensively researched and proposed for plant and animal breeding, nevertheless, as of 2013 "breeding programs based on DNA markers for improving quantitative traits in plants are rare".

Tetrad (meiosis) the four spores of a yeast, other Ascomycota or Chlamydomonas produced after meiosis

The tetrad is the four spores produced after meiosis of a yeast or other Ascomycota, Chlamydomonas or other alga, or a plant. After parent haploids mate, they produce diploids. Under appropriate environmental conditions, diploids sporulate and undergo meiosis. The meiotic products, spores, remain packaged in the parental cell body to produce the tetrad.

Chromosome segregation is the process in eukaryotes by which two sister chromatids formed as a consequence of DNA replication, or paired homologous chromosomes, separate from each other and migrate to opposite poles of the nucleus. This segregation process occurs during both mitosis and meiosis.

Coefficient of coincidence

In genetics, the coefficient of coincidence (c.o.c.) is a measure of interference in the formation of chromosomal crossovers during meiosis. It is generally the case that, if there is a crossover at one spot on a chromosome, this decreases the likelihood of a crossover in a nearby spot. This is called interference.

In genetics, pseudolinkage is a characteristic of a heterozygote for a reciprocal translocation, in which genes located near the translocation breakpoint behave as if they are linked even though they originated on nonhomologous chromosomes.

In genetics, the crossover value is the linked frequency of chromosomal crossover between two gene loci (markers). For a fixed set of genetic and environmental conditions, recombination in a particular region of a linkage structure (chromosome) tends to be constant and the same is then true for the crossover value which is used in the production of genetic map.