Thymosin

Last updated
Structure of the bovine b9-thymosin polypeptide based on the PDB 1HJ0 coordinates. Thymosin 1HJ0.png
Structure of the bovine β9-thymosin polypeptide based on the PDB 1HJ0 coordinates.

Thymosins are small proteins present in many animal tissues. They are named thymosins because they were originally isolated from the thymus, but most are now known to be present in many other tissues. [1] Thymosins have diverse biological activities, and two in particular, thymosins α1 and β4, have potentially important uses in medicine, some of which have already progressed from the laboratory to the clinic. In relation to diseases, thymosins have been categorized as biological response modifiers. [2]

Contents

Discovery

The discovery of thymosins in the mid 1960s emerged from investigations of the role of the thymus in development of the vertebrate immune system. Begun by Allan L. Goldstein in the Laboratory of Abraham White at the Albert Einstein College of Medicine in New York, the work continued at University of Texas Medical Branch in Galveston and at The George Washington University School of Medicine and Health Sciences in Washington D.C. The supposition that the role of the thymus might involve a hormone-like mechanism led to the isolation from thymus tissue of a biologically active preparation. Known as "Thymosin Fraction 5", this was able to restore some aspects of immune function in animals lacking thymus gland. Fraction 5 was found to contain over 40 small peptides (molecular weights ranging from 1000 to 15,000 Da.), [3] which were named "thymosins" and classified as α, β and γ thymosins on the basis of their behaviour in an electric field. Although found together in Fraction 5, they are now known to be structurally and genetically unrelated. Thymosin β1 was found to be ubiquitin (truncated by two C-terminal glycine residues). [4]

When individual thymosins were isolated from Fraction 5 and characterized, they were found to have extremely varied and important biological properties. However they are not truly thymic hormones in that they are not restricted in occurrence to thymus and several are widely distributed throughout many different tissues. [3] [4] [5]

Doping in sports

Thymosin beta-4 was allegedly used by some players in various Australian football codes and is under investigation by the Australian Sports Anti-Doping Authority for anti-doping violations. [6] [7]

Thymosin as a hair loss treatment

The process of hair growth utilizes many cellular and molecular mechanisms common to angiogenesis and wound healing. While studying the influence of thymosin beta-4 (Tβ4) on wound healing, Philp et al. accidentally found that hair grew more rapidly around the edges of wounds. In due course, they showed that Tβ4 induced rapid hair growth on the dorsal skin of healthy mice. [8]

See also

Related Research Articles

Testosterone Primary male sex hormone

Testosterone is the primary sex hormone and anabolic steroid in males. In humans, testosterone plays a key role in the development of male reproductive tissues such as testes and prostate, as well as promoting secondary sexual characteristics such as increased muscle and bone mass, and the growth of body hair. In addition, testosterone in both sexes is involved in health and well-being, including moods, behaviour, and in the prevention of osteoporosis. Insufficient levels of testosterone in men may lead to abnormalities including frailty and bone loss.

Beta blocker class of medications used to manage abnormal heart rhythms

Beta blockers, also spelled β-blockers, are a class of medications that are predominantly used to manage abnormal heart rhythms, and to protect the heart from a second heart attack after a first heart attack. They are also widely used to treat high blood pressure (hypertension), although they are no longer the first choice for initial treatment of most patients.

Proopiomelanocortin

Pro-opiomelanocortin (POMC) is a precursor polypeptide with 241 amino acid residues. POMC is synthesized in corticotrophs of the anterior pituitary from the 267-amino-acid-long polypeptide precursor pre-pro-opiomelanocortin (pre-POMC), by the removal of a 26-amino-acid-long signal peptide sequence during translation. POMC is part of the central melanocortin system.

Thalassemia Medical condition

Thalassemias are inherited blood disorders characterized by decreased hemoglobin production. Symptoms depend on the type and can vary from none to severe. Often there is mild to severe anemia. Anemia can result in feeling tired and pale skin. There may also be bone problems, an enlarged spleen, yellowish skin, and dark urine. Slow growth may occur in children.

Androstenedione Endogenous weak androgen

Androstenedione, or 4-androstenedione, also known as androst-4-ene-3,17-dione, is an endogenous weak androgen steroid hormone and intermediate in the biosynthesis of estrone and of testosterone from dehydroepiandrosterone (DHEA). It is closely related to androstenediol (androst-5-ene-3β,17β-diol).

Dihydrotestosterone Human hormone

Dihydrotestosterone is an endogenous androgen sex steroid and hormone. The enzyme 5α-reductase catalyzes the formation of DHT from testosterone in certain tissues including the prostate gland, seminal vesicles, epididymides, skin, hair follicles, liver, and brain. This enzyme mediates reduction of the C4-5 double bond of testosterone. Relative to testosterone, DHT is considerably more potent as an agonist of the androgen receptor (AR).

Estrogen receptor Proteins activated by the hormone estrogen

Estrogen receptors (ERs) are a group of proteins found inside cells. They are receptors that are activated by the hormone estrogen (17β-estradiol). Two classes of ER exist: nuclear estrogen receptors, which are members of the nuclear receptor family of intracellular receptors, and membrane estrogen receptors (mERs), which are mostly G protein-coupled receptors. This article refers to the former (ER).

17β-Hydroxysteroid dehydrogenases, also 17-ketosteroid reductases (17-KSR), are a group of alcohol oxidoreductases which catalyze the reduction of 17-ketosteroids and the dehydrogenation of 17β-hydroxysteroids in steroidogenesis and steroid metabolism. This includes interconversion of DHEA and androstenediol, androstenedione and testosterone, and estrone and estradiol.

The RAR-related orphan receptors (RORs) are members of the nuclear receptor family of intracellular transcription factors. There are three forms of ROR, ROR-α, -β, and -γ and each is encoded by a separate gene RORA, RORB, and RORC respectively. The RORs are somewhat unusual in that they appear to bind as monomers to hormone response elements as opposed to the majority of other nuclear receptors which bind as dimers. They bind to DNA elements called ROR response elements (RORE).

Peroxisome proliferator-activated receptor delta

Peroxisome proliferator-activated receptor beta or delta, also known as NR1C2 is a nuclear receptor that in humans is encoded by the PPARD gene.

HSD17B2

17β-Hydroxysteroid dehydrogenase 2 (17β-HSD2) is an enzyme of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family that in humans is encoded by the HSD17B2 gene.

Thymosin beta-4

Thymosin beta-4 is a protein that in humans is encoded by the TMSB4X gene. Recommended INN for thymosin beta-4 is 'timbetasin', as published by the World Health Organization (WHO).

TMSB15A Protein-coding gene in the species Homo sapiens

Thymosin beta-15A is a protein that in humans is encoded by the TMSB15A gene.

Thymosin beta-15B is a protein that, in humans, is encoded by the TMSB15B gene. The protein is identical in aminoacid sequence to Thymosin beta-15A, product of the TMSB15A gene, although synthesis of the two proteins is independently regulated.

Thymosin α1

Thymosin α1 is a peptide fragment derived from prothymosin alpha, a protein that in humans is encoded by the PTMA gene.

Beta thymosins

Beta thymosins are a family of proteins which have in common a sequence of about 40 amino acids similar to the small protein thymosin β4. They are found almost exclusively in multicellular animals. Thymosin β4 was originally obtained from the thymus in company with several other small proteins which although named collectively "thymosins" are now known to be structurally and genetically unrelated and present in many different animal tissues.

Alfatradiol

Alfatradiol, also known as 17α-estradiol and sold under the brand names Avicis, Avixis, Ell-Cranell Alpha, and Pantostin, is a weak estrogen and 5α-reductase inhibitor medication which is used topically in the treatment of pattern hair loss in men and women. It is a stereoisomer of the endogenous steroid hormone and estrogen 17β-estradiol.

Allan L. Goldstein American biochemist (born 1937)

Allan L. Goldstein is emeritus professor in the Department of Biochemistry and Molecular Medicine at the George Washington University School of Medicine. He chaired the department from 1978 until March 2009 and was awarded emeritus status in 2013. He is an authority on the thymus gland and the workings of the immune system, and co-discoverer of the thymosins, a family of hormone-like peptides isolated from the thymus gland.

3β-Androstanediol Chemical compound

3β-Androstanediol, also known as 5α-androstane-3β,17β-diol, and sometimes shortened in the literature to 3β-diol, is an endogenous steroid hormone and a metabolite of androgens like dehydroepiandrosterone (DHEA) and dihydrotestosterone (DHT).

Dimethandrolone

Dimethandrolone (DMA), also known by its developmental code name CDB-1321, is an experimental androgen/anabolic steroid (AAS) and progestogen medication which is under investigation for potential clinical use.

References

Notes
  1. Hannappel, E; Huff, T (2003). "The thymosins. Prothymosin alpha, parathymosin, and beta-thymosins: structure and function". Vitamins and hormones. 66: 257–96. PMID   12852257.
  2. Low, TL; Goldstein, AL (1984). "Thymosins: structure, function and therapeutic applications". Thymus. 6 (1–2): 27–42. PMID   6087503.
  3. 1 2 Goldstein AL (September 2007). "History of the discovery of the thymosins". Ann. N. Y. Acad. Sci. 1112: 1–13. doi:10.1196/annals.1415.045. PMID   17600284.
  4. 1 2 Hannappel E (September 2007). "beta-Thymosins". Ann. N. Y. Acad. Sci. 1112: 21–37. doi:10.1196/annals.1415.018. PMID   17468232.
  5. Garaci E (September 2007). "Thymosin alpha1: a historical overview". Ann. N. Y. Acad. Sci. 1112: 14–20. doi:10.1196/annals.1415.039. PMID   17567941.
  6. Ho, EN; Kwok, WH; Lau, MY; Wong, AS; Wan, TS; Lam, KK; Schiff, PJ; Stewart, BD (23 November 2012). "Doping control analysis of TB-500, a synthetic version of an active region of thymosin β4, in equine urine and plasma by liquid chromatography-mass spectrometry". Journal of Chromatography A. 1265: 57–69. doi:10.1016/j.chroma.2012.09.043. PMID   23084823.
  7. https://theconversation.edu.au/cronulla-sharks-and-thymosin-beta-4-is-it-doping-12694 (Feb/Mar 2013)
  8. "Triggering Hair Growth at a Cellular Level". 2017-04-16. Retrieved 2017-04-21.
Sources