TianQin

Last updated
TianQin
Location(s)outer space
Organization Sun Yat-sen University   OOjs UI icon edit-ltr-progressive.svg
Telescope style gravitational-wave observatory
interferometer
space telescope   OOjs UI icon edit-ltr-progressive.svg

The TianQin Project (Chinese :天琴计划) is a proposed space-borne gravitational-wave observatory (gravitational-wave detector) consisting of three spacecraft in Earth orbit. The TianQin project is being led by Professor Luo Jun (Chinese :罗俊), President of Sun Yat-sen University, and is based in the university's Zhuhai campus. Construction on project-related infrastructure, which will include a research building, ultra-quiet cave laboratory, and observation center, began in March 2016. The project is estimated to cost 15 billion RMB (US$2.3 billion), [1] [2] [3] [4] with a projected completion date in the mid-2030s. [5] [6] In December 2019, China launched Tianqin-1, a technology demonstration. [7]

The project's name combines the Chinese words "Tianqin" (Chinese :天琴; pinyin :Tiān qín) - the plucked string musical instrument of Zhuang people in China. This name refers to the metaphorical concept of gravitational waves "plucking the strings" by causing fluctuations in the 100,000 kilometer laser beams stretching between each of the three TianQin spacecraft.

The observatory will consist of three identical drag-free controlled spacecraft in high Earth orbits at an altitude of about 100,000 km. The nominal source of the observatory is a white-dwarf binary RX J0806.3+1527 (also known as HM Cancri). [8] This could serve as a good calibration source for the TianQin gravitational wave observatory. Similar configuration of geocentric orbit space-borne gravitational wave detectors have been developed since 2011, [9] [10] and was shown to have favorable properties for observing intermediate-mass and massive black-hole binaries. [10]

Apart from Galactic binaries, the TianQin observatory can also detect sources like massive black hole binaries, extreme mass ratio inspirals, stellar-mass black hole binary inspirals, and stochastic gravitational wave background, etc. [11]

The detection rate for massive black hole binaries is expected to be as high as about 60 per year, [12] and TianQin would have accurate estimate to the source's parameters, [13] which enable the potential for distinguishing the seed models for massive black holes, as well as issuing early warning for nearby mergers. [12] It can also be used to test the no-hair theorem [14] or constrain modified gravity. [15]

Related Research Articles

The following is a timeline of gravitational physics and general relativity.

<span class="mw-page-title-main">LIGO</span> Gravitational wave detector

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These observatories use mirrors spaced four kilometers apart which are capable of detecting a change of less than one ten-thousandth the charge diameter of a proton.

<span class="mw-page-title-main">Laser Interferometer Space Antenna</span> European space mission to measure gravitational waves

The Laser Interferometer Space Antenna (LISA) is a planned space probe to detect and accurately measure gravitational waves—tiny ripples in the fabric of spacetime—from astronomical sources. LISA will be the first dedicated space-based gravitational-wave observatory. It aims to measure gravitational waves directly by using laser interferometry. The LISA concept has a constellation of three spacecraft arranged in an equilateral triangle with sides 2.5 million kilometres long, flying along an Earth-like heliocentric orbit. The distance between the satellites is precisely monitored to detect a passing gravitational wave.

A gravastar is an object hypothesized in astrophysics by Pawel O. Mazur and Emil Mottola as an alternative to the black hole theory. It has usual black hole metric outside of the horizon, but de Sitter metric inside. On the horizon there is a thin shell of matter. The term "gravastar" is a portmanteau of the words "gravitational vacuum star". Further theoretical considerations of gravastars include the notion of a nestar.

<span class="mw-page-title-main">Einstein@Home</span> BOINC volunteer computing project that analyzes data from LIGO to detect gravitational waves

Einstein@Home is a volunteer computing project that searches for signals from spinning neutron stars in data from gravitational-wave detectors, from large radio telescopes, and from a gamma-ray telescope. Neutron stars are detected by their pulsed radio and gamma-ray emission as radio and/or gamma-ray pulsars. They also might be observable as continuous gravitational wave sources if they are rapidly spinning and non-axisymmetrically deformed. The project was officially launched on 19 February 2005 as part of the American Physical Society's contribution to the World Year of Physics 2005 event.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena described by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

The gravitational wave background is a random background of gravitational waves permeating the Universe, which is detectable by gravitational-wave experiments, like pulsar timing arrays. The signal may be intrinsically random, like from stochastic processes in the early Universe, or may be produced by an incoherent superposition of a large number of weak independent unresolved gravitational-wave sources, like supermassive black-hole binaries. Detecting the gravitational wave background can provide information that is inaccessible by any other means about astrophysical source population, like hypothetical ancient supermassive black-hole binaries, and early Universe processes, like hypothetical primordial inflation and cosmic strings.

<span class="mw-page-title-main">Gravitational wave</span> Propagating spacetime ripple

Gravitational waves are waves of the intensity of gravity that are generated by the accelerated masses of binary stars and other motions of gravitating masses, and propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves. Gravitational waves are sometimes called gravity waves, but gravity waves typically refer to displacement waves in fluids. In 1916 Albert Einstein demonstrated that gravitational waves result from his general theory of relativity as ripples in spacetime.

<span class="mw-page-title-main">Gravitational-wave observatory</span> Device used to measure gravitational waves

A gravitational-wave detector is any device designed to measure tiny distortions of spacetime called gravitational waves. Since the 1960s, various kinds of gravitational-wave detectors have been built and constantly improved. The present-day generation of laser interferometers has reached the necessary sensitivity to detect gravitational waves from astronomical sources, thus forming the primary tool of gravitational-wave astronomy.

<span class="mw-page-title-main">Gravitational-wave astronomy</span> Branch of astronomy using gravitational waves

Gravitational-wave astronomy is a subfield of astronomy concerned with the detection and study of gravitational waves emitted by astrophysical sources.

<span class="mw-page-title-main">Primordial black hole</span> Hypothetical black hole formed soon after the Big Bang

In cosmology, primordial black holes (PBHs) are hypothetical black holes that formed soon after the Big Bang. In the inflationary era and early radiation-dominated universe, extremely dense pockets of subatomic matter may have been tightly packed to the point of gravitational collapse, creating primordial black holes without the supernova compression typically needed to make black holes today. Because the creation of primordial black holes would pre-date the first stars, they are not limited to the narrow mass range of stellar black holes.

<span class="mw-page-title-main">Binary black hole</span> System consisting of two black holes in close orbit around each other

A binary black hole (BBH), or black hole binary, is a system consisting of two black holes in close orbit around each other. Like black holes themselves, binary black holes are often divided into stellar binary black holes, formed either as remnants of high-mass binary star systems or by dynamic processes and mutual capture; and binary supermassive black holes, believed to be a result of galactic mergers.

In astrophysics, the chirp mass of a compact binary system determines the leading-order orbital evolution of the system as a result of energy loss from emitting gravitational waves. Because the gravitational wave frequency is determined by orbital frequency, the chirp mass also determines the frequency evolution of the gravitational wave signal emitted during a binary's inspiral phase. In gravitational wave data analysis, it is easier to measure the chirp mass than the two component masses alone.

Fuzzy cold dark matter is a hypothetical form of cold dark matter proposed to solve the cuspy halo problem. It would consist of extremely light scalar particles with masses on the order of eV; so a Compton wavelength on the order of 1 light year. Fuzzy cold dark matter halos in dwarf galaxies would manifest wave behavior on astrophysical scales, and the cusps would be avoided through the Heisenberg uncertainty principle. The wave behavior leads to interference patterns, spherical soliton cores in dark matter halo centers, and cylindrical soliton-like cores in dark matter cosmic web filaments.

<span class="mw-page-title-main">GW170817</span> Gravitational-wave signal detected in 2017

GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy NGC 4993. The signal was produced by the last moments of the inspiral process of a binary pair of neutron stars, ending with their merger. It is the first GW observation that has been confirmed by non-gravitational means. Unlike the five previous GW detections—which were of merging black holes and thus not expected to produce a detectable electromagnetic signal—the aftermath of this merger was seen across the electromagnetic spectrum by 70 observatories on 7 continents and in space, marking a significant breakthrough for multi-messenger astronomy. The discovery and subsequent observations of GW 170817 were given the Breakthrough of the Year award for 2017 by the journal Science.

In gravitational wave astronomy, a golden binary is a binary black hole collision event whose inspiral and ringdown phases have been measured accurately enough to provide separate measurements of the initial and final black hole masses.

PyCBC is an open source software package primarily written in the Python programming language which is designed for use in gravitational-wave astronomy and gravitational-wave data analysis. PyCBC contains modules for signal processing, FFT, matched filtering, gravitational waveform generation, among other tasks common in gravitational-wave data analysis.

The Taiji Program in Space, or Taiji, is a proposed Chinese satellite-based gravitational-wave observatory. It is scheduled for launch in 2033 to study ripples in spacetime caused by gravitational waves. The program consists of a triangle of three spacecraft orbiting the Sun linked by laser interferometers.

Ground-based interferometric gravitational-wave search refers to methods and devices used to search and detect gravitational waves based on interferometers built on the ground. Most of current gravitational wave observations have been made using these techniques; the first one was made in 2015 by the two LIGO detectors. The current major detectors are the two LIGO in the United States, Virgo in Italy and KAGRA in Japan, which are all part of the second generation of detectors; future projects include LIGO-India as part of the second generation, and the Einstein Telescope and Cosmic Explorer forming a third generation.

References

  1. Jun Luo; et al. (2016). "TianQin: a space-borne gravitational wave detector". Classical and Quantum Gravity. 33 (3): 035010. arXiv: 1512.02076 . Bibcode:2016CQGra..33c5010L. doi:10.1088/0264-9381/33/3/035010. S2CID   54833657.
  2. Jianwei Mei; Chenggang Shao; Yan Wang (2015). Fundamentals of the TianQin mission. XIIth International Conference on Gravitation, Astrophysics and Cosmology, PFUR, Moscow, Russia, 2015-07. arXiv: 1510.04754 . Bibcode:2016gac..conf..360M. doi:10.1142/9789814759816_0079. Archived 2018-04-11 at the Wayback Machine . proceedings not yet published as of 2015-12.
  3. Hsien-Chi Yeh. (2015). Current progress of developing inter-satellite laser interferometry for TIANQIN missions. XIIth International Conference on Gravitation, Astrophysics and Cosmology, PFUR, Moscow, Russia, 2015-07. Archived 2018-04-11 at the Wayback Machine . proceedings not yet published as of 2015-12.
  4. J. Luo; J. Mei; H.-C. Yeh; C. Shao; M.V. Sazhin; V. Milyukov. (2015). TIANQIN mission concept. XIIth International Conference on Gravitation, Astrophysics and Cosmology, PFUR, Moscow, Russia, 2015-07. Archived 2018-04-11 at the Wayback Machine . proceedings not yet published as of 2015-12.
  5. ZHOU WENTING (2019-04-12). "China-led project expected to enhance space research". China Daily. Retrieved 2019-09-19.
  6. Hu, Yiming; Mei, Jianwei; Luo, Jun (1 August 2019). "TianQin project and international collaboration". Chinese Science Bulletin. 64 (24): 2475–2483. doi: 10.1360/N972019-00046 .
  7. "China launches first satellite for space-based gravitational wave detection". New China TV. 2019-12-21. Retrieved 2019-12-21.
  8. Ye, Bo-Bing; Zhang, Xuefeng; Zhou, Ming-Yue; et al. (2019). "Optimizing orbits for TianQin". International Journal of Modern Physics D. 28 (9): 1950121. arXiv: 2012.03260 . Bibcode:2019IJMPD..2850121Y. doi:10.1142/S0218271819501219. S2CID   145846821.
  9. Massimo Tinto; J. C. N. de Araujo; Odylio D. Aguiar; Eduardo da Silva Alves (2012). A Geostationary Gravitational Wave Interferometer (GEOGRAWI). Concepts for the NASA Gravitational-Wave Mission, Solicitation: NNH11ZDA019L. arXiv: 1111.2576 .
  10. 1 2 Sean T. McWilliams (2012). Geostationary Antenna for Disturbance-Free Laser Interferometry (GADFLI). Concepts for the NASA Gravitational-Wave Mission, Solicitation: NNH11ZDA019L. arXiv: 1111.3708 .
  11. Hu, Yi-Ming; Mei, Jianwei; Luo, Jun (September 2017). "Science prospects for space-borne gravitational-wave missions". National Science Review. 4 (5): 683–684. doi: 10.1093/nsr/nwx115 .
  12. 1 2 Wang, Hai-Tian; Jiang, Zhen; Sesana, Alberto; Barausse, Enrico; Huang, Shun-Jia; Wang, Yi-Fan; Feng, Wen-Fan; Wang, Yan; Hu, Yi-Ming; Mei, Jianwei; Luo, Jun (6 August 2019). "Science with the TianQin observatory: Preliminary results on massive black hole binaries". Physical Review D. 100 (4): 043003. arXiv: 1902.04423 . Bibcode:2019PhRvD.100d3003W. doi:10.1103/PhysRevD.100.043003. S2CID   118954251.
  13. Feng, Wen-Fan; Wang, Hai-Tian; Hu, Xin-Chun; Hu, Yi-Ming; Wang, Yan (5 June 2019). "Preliminary study on parameter estimation accuracy of supermassive black hole binary inspirals for TianQin". Physical Review D. 99 (12): 123002. arXiv: 1901.02159 . Bibcode:2019PhRvD..99l3002F. doi:10.1103/PhysRevD.99.123002. S2CID   119083959.
  14. Shi, Changfu; Bao, Jiahui; Wang, Hai-Tian; Zhang, Jian-dong; Hu, Yi-Ming; Sesana, Alberto; Barausse, Enrico; Mei, Jianwei; Luo, Jun (20 August 2019). "Science with the TianQin observatory: Preliminary results on testing the no-hair theorem with ringdown signals". Physical Review D. 100 (4): 044036. arXiv: 1902.08922 . Bibcode:2019PhRvD.100d4036S. doi:10.1103/PhysRevD.100.044036. S2CID   119084661.
  15. Bao, Jiahui; Shi, Changfu; Wang, Haitian; Zhang, Jian-dong; Hu, Yiming; Mei, Jianwei; Luo, Jun (14 October 2019). "Constraining modified gravity with ringdown signals: an explicit example". Phys. Rev. D. 100 (8). 084024. arXiv: 1905.11674 . Bibcode:2019PhRvD.100h4024B. doi:10.1103/PhysRevD.100.084024. S2CID   167217249.