Tibor Gallai

Last updated
Tibor Gallai
Born(1912-07-15)15 July 1912
Died2 January 1992(1992-01-02) (aged 79)
Budapest, Hungary
Alma mater Technical University of Budapest
Known for Sylvester–Gallai theorem
Scientific career
Fields Mathematics
Institutions Eötvös Loránd University
Doctoral advisor Dénes Kőnig
Doctoral students László Lovász

Tibor Gallai (born Tibor Grünwald, 15 July 1912 – 2 January 1992) was a Hungarian mathematician. He worked in combinatorics, especially in graph theory, and was a lifelong friend and collaborator of Paul Erdős. He was a student of Dénes Kőnig and an advisor of László Lovász. He was a corresponding member of the Hungarian Academy of Sciences (1991).


His main results

The Edmonds–Gallai decomposition theorem, which was proved independently by Gallai and Jack Edmonds, describes finite graphs from the point of view of matchings. Gallai also proved, with Milgram, Dilworth's theorem in 1947, but as they hesitated to publish the result, Dilworth independently discovered and published it. [1]

Gallai was the first to prove the higher-dimensional version of van der Waerden's theorem.

With Paul Erdős he gave a necessary and sufficient condition for a sequence to be the degree sequence of a graph, known as the Erdős–Gallai theorem.

See also

Related Research Articles

<span class="mw-page-title-main">Richard Rado</span> British mathematician

Richard Rado FRS was a German-born British mathematician whose research concerned combinatorics and graph theory. He was Jewish and left Germany to escape Nazi persecution. He earned two PhDs: in 1933 from the University of Berlin, and in 1935 from the University of Cambridge. He was interviewed in Berlin by Lord Cherwell for a scholarship given by the chemist Sir Robert Mond which provided financial support to study at Cambridge. After he was awarded the scholarship, Rado and his wife left for the UK in 1933. He was appointed Professor of Mathematics at the University of Reading in 1954 and remained there until he retired in 1971.

<span class="mw-page-title-main">Perfect graph</span> Graph with tight clique-coloring relation

In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices.

<span class="mw-page-title-main">Perfect graph theorem</span> An undirected graph is perfect if and only if its complement graph is also perfect

In graph theory, the perfect graph theorem of László Lovász states that an undirected graph is perfect if and only if its complement graph is also perfect. This result had been conjectured by Berge, and it is sometimes called the weak perfect graph theorem to distinguish it from the strong perfect graph theorem characterizing perfect graphs by their forbidden induced subgraphs.

<span class="mw-page-title-main">Critical graph</span> Undirected graph

In graph theory, a critical graph is an undirected graph all of whose proper subgraphs have smaller chromatic number. In such a graph, every vertex or edge is a critical element, in the sense that its deletion would decrease the number of colors needed in a graph coloring of the given graph. The decrease in the number of colors cannot be by more than one.

In mathematics, in the areas of order theory and combinatorics, Dilworth's theorem characterizes the width of any finite partially ordered set in terms of a partition of the order into a minimum number of chains. It is named for the mathematician Robert P. Dilworth (1950).

<span class="mw-page-title-main">Sylvester–Gallai theorem</span> Existence of a line through two points

The Sylvester–Gallai theorem in geometry states that every finite set of points in the Euclidean plane has a line that passes through exactly two of the points or a line that passes through all of them. It is named after James Joseph Sylvester, who posed it as a problem in 1893, and Tibor Gallai, who published one of the first proofs of this theorem in 1944.

<span class="mw-page-title-main">Dénes Kőnig</span> Hungarian mathematician (1884-1944)

Dénes Kőnig was a Hungarian mathematician of Hungarian Jewish heritage who worked in and wrote the first textbook on the field of graph theory.

<span class="mw-page-title-main">Degree (graph theory)</span> Number of edges touching a vertex in a graph

In graph theory, the degree of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex is denoted or . The maximum degree of a graph , denoted by , and the minimum degree of a graph, denoted by , are the maximum and minimum of its vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0.

<span class="mw-page-title-main">Erdős–Szekeres theorem</span> Sufficiently long sequences of numbers have long monotonic subsequences

In mathematics, the Erdős–Szekeres theorem asserts that, given r, s, any sequence of distinct real numbers with length at least (r − 1)(s − 1) + 1 contains a monotonically increasing subsequence of length ror a monotonically decreasing subsequence of length s. The proof appeared in the same 1935 paper that mentions the Happy Ending problem.

<i>Proofs from THE BOOK</i> 1998 mathematics book by Aigner and Ziegler

Proofs from THE BOOK is a book of mathematical proofs by Martin Aigner and Günter M. Ziegler. The book is dedicated to the mathematician Paul Erdős, who often referred to "The Book" in which God keeps the most elegant proof of each mathematical theorem. During a lecture in 1985, Erdős said, "You don't have to believe in God, but you should believe in The Book."

In graph theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partially orderable graphs, containment graphs, and divisor graphs. An incomparability graph is an undirected graph that connects pairs of elements that are not comparable to each other in a partial order.

<span class="mw-page-title-main">Factor-critical graph</span> Graph of n vertices with a perfect matching for every subgraph of n-1 vertices

In graph theory, a mathematical discipline, a factor-critical graph is a graph with n vertices in which every subgraph of n − 1 vertices has a perfect matching.

<span class="mw-page-title-main">Václav Chvátal</span> Czech-Canadian mathematician

Václav (Vašek) Chvátal is a Professor Emeritus in the Department of Computer Science and Software Engineering at Concordia University in Montreal, Quebec, Canada, and a visiting professor at Charles University in Prague. He has published extensively on topics in graph theory, combinatorics, and combinatorial optimization.

András Hajnal was a professor of mathematics at Rutgers University and a member of the Hungarian Academy of Sciences known for his work in set theory and combinatorics.

<span class="mw-page-title-main">Vera T. Sós</span> Hungarian mathematician (1930–2023)

Vera Turán Sós was a Hungarian mathematician who specialized in number theory and combinatorics. She was a student and close collaborator of both Paul Erdős and Alfréd Rényi. She also collaborated frequently with her husband Pál Turán, an analyst, number theorist, and combinatorist. Until 1987, she worked at the Department of Analysis at the Eötvös Loránd University, Budapest. Afterwards, she was employed by the Alfréd Rényi Institute of Mathematics. She was elected a corresponding member (1985) and member (1990) of the Hungarian Academy of Sciences. In 1997, Sós was awarded the Széchenyi Prize.

László Pyber is a Hungarian mathematician. He is a researcher at the Alfréd Rényi Institute of Mathematics, Budapest. He works in combinatorics and group theory.

In mathematics, in the areas of order theory and combinatorics, Mirsky's theorem characterizes the height of any finite partially ordered set in terms of a partition of the order into a minimum number of antichains. It is named for Leon Mirsky (1971) and is closely related to Dilworth's theorem on the widths of partial orders, to the perfection of comparability graphs, to the Gallai–Hasse–Roy–Vitaver theorem relating longest paths and colorings in graphs, and to the Erdős–Szekeres theorem on monotonic subsequences.

The Erdős–Gallai theorem is a result in graph theory, a branch of combinatorial mathematics. It provides one of two known approaches to solving the graph realization problem, i.e. it gives a necessary and sufficient condition for a finite sequence of natural numbers to be the degree sequence of a simple graph. A sequence obeying these conditions is called "graphic". The theorem was published in 1960 by Paul Erdős and Tibor Gallai, after whom it is named.

<span class="mw-page-title-main">Gallai–Hasse–Roy–Vitaver theorem</span> Duality of graph colorings and orientations

In graph theory, the Gallai–Hasse–Roy–Vitaver theorem is a form of duality between the colorings of the vertices of a given undirected graph and the orientations of its edges. It states that the minimum number of colors needed to properly color any graph equals one plus the length of a longest path in an orientation of chosen to minimize this path's length. The orientations for which the longest path has minimum length always include at least one acyclic orientation.

<span class="mw-page-title-main">Gallai–Edmonds decomposition</span> Partition of the vertices of a graph giving information on the structure of maximum matchings

In graph theory, the Gallai–Edmonds decomposition is a partition of the vertices of a graph into three subsets which provides information on the structure of maximum matchings in the graph. Tibor Gallai and Jack Edmonds independently discovered it and proved its key properties.


  1. P. Erdős: In memory of Tibor Gallai, Combinatorica , 12(1992), 373374.