Ticarcillin/clavulanic acid

Last updated
Ticarcillin/clavulanic acid
Combination of
Ticarcillin β-lactam antibiotic
Clavulanic acid β-lactamase inhibitor
Clinical data
Trade names Trimentin
Routes of
administration
Injection
Legal status
Legal status

Ticarcillin/clavulanic acid, or co-ticarclav, is a combination antibiotic consisting of ticarcillin, a β-lactam antibiotic, and clavulanic acid, a β-lactamase inhibitor. This combination results in an antibiotic with an increased spectrum of action and restored efficacy against ticarcillin-resistant bacteria that produce certain β-lactamases. [1]

Ticarcillin chemical compound

Ticarcillin is a carboxypenicillin. It is almost always sold and used in combination with clavulanate as ticarcillin/clavulanic acid. Because it is a penicillin, it also falls within the larger class of beta-lactam antibiotics. Its main clinical use is as an injectable antibiotic for the treatment of Gram-negative bacteria, particularly Pseudomonas aeruginosa. It is also one of the few antibiotics capable of treating Stenotrophomonas maltophilia infections.

Clavulanic acid chemical compound

Clavulanic acid is a β-lactam drug that functions as a mechanism-based β-lactamase inhibitor. While not effective by itself as an antibiotic, when combined with penicillin-group antibiotics, it can overcome antibiotic resistance in bacteria that secrete β-lactamase, which otherwise inactivates most penicillins.

β-Lactamase inhibitor Endogenous substances and drugs that inhibit or block the activity of beta-lactamases

Beta-lactamases are a family of enzymes involved in bacterial resistance to beta-lactam antibiotics. They act by breaking the beta-lactam ring that allows penicillin-like antibiotics to work. Strategies for combating this form of resistance have included the development of new beta-lactam antibiotics that are more resistant to cleavage and the development of the class of enzyme inhibitors called beta-lactamase inhibitors. Although β-lactamase inhibitors have little antibiotic activity of their own, they prevent bacterial degradation of beta-lactam antibiotics and thus extend the range of bacteria the drugs are effective against.

Related Research Articles

Amoxicillin antibiotic useful for the treatment of a number of bacterial infections

Amoxicillin is an antibiotic often used for the treatment of a number of bacterial infections. These include middle ear infection, strep throat, pneumonia, skin infections, and urinary tract infections among others. It is taken by mouth, or less commonly by injection.

Beta-lactamase enzyme

Beta-lactamases are enzymes produced by bacteria that provide multi-resistance to β-lactam antibiotics such as penicillins, cephalosporins, cephamycins, and carbapenems (ertapenem), although carbapenems are relatively resistant to beta-lactamase. Beta-lactamase provides antibiotic resistance by breaking the antibiotics' structure. These antibiotics all have a common element in their molecular structure: a four-atom ring known as a β-lactam. Through hydrolysis, the lactamase enzyme breaks the β-lactam ring open, deactivating the molecule's antibacterial properties.

Penicillin group of antibiotics derived from Penicillium fungi

Penicillin is a group of antibiotics which include penicillin G, penicillin V, procaine penicillin, and benzathine penicillin. Penicillin antibiotics were among the first medications to be effective against many bacterial infections caused by staphylococci and streptococci. They are still widely used today, though many types of bacteria have developed resistance following extensive use.

β-lactam antibiotic class of broad-spectrum antibiotics, consisting of all antibiotic agents that contain a β-lactam ring in their molecular structures

β-lactam antibiotics are a class of antibiotic consisting of all antibiotic agents that contain a beta-lactam ring in their molecular structures. This includes penicillin derivatives (penams), cephalosporins (cephems), monobactams, and carbapenems. Most β-lactam antibiotics work by inhibiting cell wall biosynthesis in the bacterial organism and are the most widely used group of antibiotics. Until 2003, when measured by sales, more than half of all commercially available antibiotics in use were β-lactam compounds.

This is the timeline of antimicrobial (anti-infective) therapy. The years show when a given drug was released onto the pharmaceutical market. This is not a timeline of the development of the antibiotics themselves.

Amoxicillin/clavulanic acid combination antibiotic drug

Amoxicillin/clavulanic acid, also known as co-amoxiclav, is an antibiotic useful for the treatment of a number of bacterial infections. It is a combination consisting of amoxicillin, a β-lactam antibiotic, and potassium clavulanate, a β-lactamase inhibitor. It is specifically used for otitis media, strep throat, pneumonia, cellulitis, urinary tract infections, animal bites, and tuberculosis. It is taken by mouth or by injection into a vein.

Suicide inhibition form of irreversible enzyme inhibition

In biochemistry, suicide inhibition, also known as suicide inactivation or mechanism-based inhibition, is an irreversible form of enzyme inhibition that occurs when an enzyme binds a substrate analog and forms an irreversible complex with it through a covalent bond during the normal catalysis reaction. The inhibitor binds to the active site where it is modified by the enzyme to produce a reactive group that reacts irreversibly to form a stable inhibitor-enzyme complex. This usually uses a prosthetic group or a coenzyme, forming electrophilic alpha and beta unsaturated carbonyl compounds and imines.

Cilastatin chemical compound

Cilastatin is not a beta-lactamase inhibitor but instead inhibits the human enzyme dehydropeptidase.

Ampicillin/sulbactam is a combination of the common penicillin-derived antibiotic ampicillin and sulbactam, an inhibitor of bacterial beta-lactamase. Two different forms of the drug exist. The first, developed in 1987 and marketed in the United States under the tradename Unasyn, generic only outside the United States, is an intravenous antibiotic. The second, an oral form called sultamicillin, is marketed under the trade name Ampictam outside the United States. And generic only in the United States, ampicillin/sulbactam is used to treat infections caused by bacteria resistant to beta-lactam antibiotics. Sulbactam blocks the enzyme which breaks down ampicillin and thereby allows ampicillin to attack and kill the bacteria.

Streptomyces clavuligerus is a species of Gram-positive bacterium notable for producing clavulanic acid.

Carboxypenicillin

The carboxypenicillins are a group of antibiotics. They belong to the penicillin family and comprise the members carbenicillin and ticarcillin.

A ureohydrolase is a type of hydrolase enzyme.

The extended-spectrum penicillins are a group of antibiotics that have the widest antibacterial spectrum of all penicillins. Some sources identify them with antipseudomonal penicillins, others consider these types to be distinct. This group includes the carboxypenicillins and the ureidopenicillins. Aminopenicillins, in contrast, do not have activity against Pseudomonas species, as their positively charged amino group does not hinder degradation by bacterially produced beta-lactamases.

Avibactam chemical compound

Avibactam is a non-β-lactam β-lactamase inhibitor developed by Actavis jointly with AstraZeneca. A new drug application for avibactam in combination with ceftazidime was approved by the FDA on February 25, 2015, for treating complicated urinary tract (cUTI) and complicated intra-abdominal infections (cIAI) caused by antibiotic resistant-pathogens, including those caused by multi-drug resistant Gram-negative bacterial pathogens.

Ceftazidime/avibactam pharmaceutical drug

Ceftazidime/avibactam is a combination drug composed of ceftazidime, a cephalosporin antibiotic, and avibactam, a β-lactamase inhibitor. It is used for the treatment of serious bacterial infections.

Vaborbactam chemical compound

Vaborbactam (INN) is a non-β-lactam β-lactamase inhibitor discovered by Rempex Pharmaceuticals, a subsidiary of The Medicines Company. While not effective as an antibiotic by itself, it restores potency to existing antibiotics by inhibiting the beta-lactamase enzymes that would otherwise degrade them. When combined with an appropriate antibiotic it can be used for the treatment of gram-negative bacterial infections.

References