Tietze extension theorem

Last updated
Pavel Urysohn Urysohn.jpeg
Pavel Urysohn

In topology, the Tietze extension theorem (also known as the Tietze–UrysohnBrouwer extension theorem or Urysohn-Brouwer lemma [1] ) states that any real-valued, continuous function on a closed subset of a normal topological space can be extended to the entire space, preserving boundedness if necessary.

Contents

Formal statement

If is a normal space and is a continuous map from a closed subset of into the real numbers carrying the standard topology, then there exists a continuous extension of to that is, there exists a map continuous on all of with for all Moreover, may be chosen such that that is, if is bounded then may be chosen to be bounded (with the same bound as ).

Proof

The function is constructed iteratively. Firstly, we define Observe that and are closed and disjoint subsets of . By taking a linear combination of the function obtained from the proof of Urysohn's lemma, there exists a continuous function such that and furthermore on . In particular, it follows that on . We now use induction to construct a sequence of continuous functions such that We've shown that this holds for and assume that have been constructed. Define and repeat the above argument replacing with and replacing with . Then we find that there exists a continuous function such that By the inductive hypothesis, hence we obtain the required identities and the induction is complete. Now, we define a continuous function as Given , Therefore, the sequence is Cauchy. Since the space of continuous functions on together with the sup norm is a complete metric space, it follows that there exists a continuous function such that converges uniformly to . Since on , it follows that on . Finally, we observe that hence is bounded and has the same bound as .

History

L. E. J. Brouwer and Henri Lebesgue proved a special case of the theorem, when is a finite-dimensional real vector space. Heinrich Tietze extended it to all metric spaces, and Pavel Urysohn proved the theorem as stated here, for normal topological spaces. [2] [3]

Equivalent statements

This theorem is equivalent to Urysohn's lemma (which is also equivalent to the normality of the space) and is widely applicable, since all metric spaces and all compact Hausdorff spaces are normal. It can be generalized by replacing with for some indexing set any retract of or any normal absolute retract whatsoever.

Variations

If is a metric space, a non-empty subset of and is a Lipschitz continuous function with Lipschitz constant then can be extended to a Lipschitz continuous function with same constant This theorem is also valid for Hölder continuous functions, that is, if is Hölder continuous function with constant less than or equal to then can be extended to a Hölder continuous function with the same constant. [4]

Another variant (in fact, generalization) of Tietze's theorem is due to H.Tong and Z. Ercan: [5] Let be a closed subset of a normal topological space If is an upper semicontinuous function, a lower semicontinuous function, and a continuous function such that for each and for each , then there is a continuous extension of such that for each This theorem is also valid with some additional hypothesis if is replaced by a general locally solid Riesz space. [5]

Dugundji (1951) extends the theorem as follows: If is a metric space, is a locally convex topological vector space, is a closed subset of and is continuous, then it could be extended to a continuous function defined on all of . Moreover, the extension could be chosen such that

See also

Related Research Articles

<span class="mw-page-title-main">Borsuk–Ulam theorem</span> Theorem in topology

In mathematics, the Borsuk–Ulam theorem states that every continuous function from an n-sphere into Euclidean n-space maps some pair of antipodal points to the same point. Here, two points on a sphere are called antipodal if they are in exactly opposite directions from the sphere's center.

The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a vector subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of the Hahn–Banach theorem is known as the Hahn–Banach separation theorem or the hyperplane separation theorem, and has numerous uses in convex geometry.

<span class="mw-page-title-main">Mean value theorem</span> On the existence of a tangent to an arc parallel to the line through its endpoints

In mathematics, the mean value theorem states, roughly, that for a given planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints. It is one of the most important results in real analysis. This theorem is used to prove statements about a function on an interval starting from local hypotheses about derivatives at points of the interval.

In topology, Urysohn's lemma is a lemma that states that a topological space is normal if and only if any two disjoint closed subsets can be separated by a continuous function.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non-increasing, or non-decreasing. In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded.

In mathematics, a linear form is a linear map from a vector space to its field of scalars.

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

In mathematics, specifically differential calculus, the inverse function theorem gives a sufficient condition for a function to be invertible in a neighborhood of a point in its domain: namely, that its derivative is continuous and non-zero at the point. The theorem also gives a formula for the derivative of the inverse function. In multivariable calculus, this theorem can be generalized to any continuously differentiable, vector-valued function whose Jacobian determinant is nonzero at a point in its domain, giving a formula for the Jacobian matrix of the inverse. There are also versions of the inverse function theorem for holomorphic functions, for differentiable maps between manifolds, for differentiable functions between Banach spaces, and so forth.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

Vapnik–Chervonenkis theory was developed during 1960–1990 by Vladimir Vapnik and Alexey Chervonenkis. The theory is a form of computational learning theory, which attempts to explain the learning process from a statistical point of view.

In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.

In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis.

In the theory of probability, the Glivenko–Cantelli theorem, named after Valery Ivanovich Glivenko and Francesco Paolo Cantelli, describes the asymptotic behaviour of the empirical distribution function as the number of independent and identically distributed observations grows. Specifically, the empirical distribution function converges uniformly to the true distribution function almost surely.

In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are real constants C ≥ 0, α > 0, such that for all x and y in the domain of f. More generally, the condition can be formulated for functions between any two metric spaces. The number is called the exponent of the Hölder condition. A function on an interval satisfying the condition with α > 1 is constant. If α = 1, then the function satisfies a Lipschitz condition. For any α > 0, the condition implies the function is uniformly continuous. The condition is named after Otto Hölder.

The Katětov–Tong insertion theorem is a theorem of point-set topology proved independently by Miroslav Katětov and Hing Tong in the 1950s. The theorem states the following:

In mathematics, specifically in the study of ordinary differential equations, the Peano existence theorem, Peano theorem or Cauchy–Peano theorem, named after Giuseppe Peano and Augustin-Louis Cauchy, is a fundamental theorem which guarantees the existence of solutions to certain initial value problems.

In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somewhat more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.

This is a glossary of concepts and results in real analysis and complex analysis in mathematics.

References

  1. "Urysohn-Brouwer lemma", Encyclopedia of Mathematics , EMS Press, 2001 [1994]
  2. "Urysohn-Brouwer lemma", Encyclopedia of Mathematics , EMS Press, 2001 [1994]
  3. Urysohn, Paul (1925), "Über die Mächtigkeit der zusammenhängenden Mengen", Mathematische Annalen , 94 (1): 262–295, doi:10.1007/BF01208659, hdl: 10338.dmlcz/101038 .
  4. McShane, E. J. (1 December 1934). "Extension of range of functions". Bulletin of the American Mathematical Society. 40 (12): 837–843. doi: 10.1090/S0002-9904-1934-05978-0 .
  5. 1 2 Zafer, Ercan (1997). "Extension and Separation of Vector Valued Functions" (PDF). Turkish Journal of Mathematics. 21 (4): 423–430.