Tiffeneau–Demjanov rearrangement

Last updated
Tiffeneau–Demjanov rearrangement
Named after Marc Tiffeneau
Nikolay Demyanov
Reaction type Rearrangement reaction
RSC ontology ID RXNO:0000381

The Tiffeneau–Demjanov rearrangement (TDR) is the chemical reaction of a 1-aminomethyl-cycloalkanol with nitrous acid to form an enlarged cycloketone.

Chemical reaction Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

Nitrous acid chemical compound

Nitrous acid (molecular formula HNO2) is a weak and monobasic acid known only in solution and in the form of nitrite (NO
) salts. Nitrous acid is used to make diazonium salts from amines. The resulting diazonium salts are reagents in azo coupling reactions to give azo dyes.


The Tiffeneau-Demjanov rearrangement Tiffeneau-Demjanov Rearrangement Scheme.png
The Tiffeneau–Demjanov rearrangement

The Tiffeneau–Demjanov ring expansion, Tiffeneau–Demjanov rearrangement, or TDR, provides an easy way to increase amino-substituted cycloalkanes and cycloalkanols in size by one carbon. Ring sizes from cyclopropane through cyclooctane are able to undergo Tiffeneau–Demjanov ring expansion with some degree of success. Yields decrease as initial ring size increases, and the ideal use of TDR is for synthesis of five, six, and seven membered rings. A principal synthetic application of Tiffeneau–Demjanov ring expansion is to bicyclic or polycyclic systems. Several reviews on this reaction have been published. [1] [2] [3]


The reaction now known as the Tiffeneau–Demjanov rearrangement (TDR) was discovered in two steps. The first step of occurred in 1901 when Russian chemist Nikolai Demyanov discovered that aminomethylcycloalkanes produce novel products upon treatment with nitrous acid. When this product was identified as the expanded alcohol in 1903, the Demjanov rearrangement was coined.

The Demjanov rearrangement is the chemical reaction of primary amines with nitrous acid to give rearranged alcohols. It involves substitution by a hydroxyl group with a possible ring expansion. It is named after the Russian chemist Nikolai Jakovlevich Demjanov (1861–1938).

The Demjanov rearrangement itself has since been successfully used in industry and synthetical organic chemistry. However, its scope is limited. The Demjanov rearrangement is only best suited for expanding four, five, and six member aminomethylcycloalkanes. Moreover, alkenes and un-expanded cycloalcohols form as by-products. Yields diminish as the starting cycloalkane becomes larger.

A discovery by French scientists a few years before World War II would result in the modern TDR reaction. In 1937, Tiffeneau, Weill, and Tchoubar published in Comptes Rendus their finding that 1-aminomethylcycloahexanol converts readily to cycloheptanone upon treatment with nitrous acid. [4] Perhaps due to such a large ring being expanded, the authors did not immediately relate it to the Demjanov rearrangement. Instead, they envisioned that their reaction was similar to one discovered by Wallack in 1906. Upon oxidation with permanganate, cycloglycols will dehydrate to yield an aldehyde via an epoxide intermediate . The authors postulated that deamination resulted in a similar epoxide intermediate that subsequently formed a ring enlarge cycloketone. However, in the time that followed, scientists began to realize that these reactions were related. By the early 1940s, TDR was in organic vernacular. Tiffeneau's discovery enlarged the synthetic scope of the Demjanov rearrangement as now seven and eight carbon rings could be enlarged. Since the resulting cycloketone could be easily converted to a cycloaminoalcohol again, this new method quickly became popular among organic chemists.

Marc Tiffeneau French chemist

Marc Émile Pierre Adolphe Tiffeneau was a French chemist who co-discovered the Tiffeneau-Demjanov rearrangement.

Permanganate anion

A permanganate is the general name for a chemical compound containing the manganate(VII) ion, (MnO
). Because manganese is in the +7 oxidation state, the permanganate(VII) ion is a strong oxidizing agent. The ion has tetrahedral geometry. Permanganate solutions are purple in color and are stable in neutral or slightly alkaline media. The exact chemical reaction is dependent upon the organic contaminants present and the oxidant utilized. For example, trichloroethane (C2H3Cl3) is oxidized by permanganate ions to form carbon dioxide (CO2), manganese dioxide (MnO2), sodium ions (Na+), hydronium ions (H+), and chloride ions (Cl).

Basic mechanism

The basic reaction mechanism is a diazotation of the amino group by nitrous acid followed by expulsion of nitrogen and formation of a primary carbocation. A rearrangement reaction with ring expansion forms a more stable oxonium ion which is deprotonated. [5]

In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical change occurs.

Carbocation cation containing an even number of electrons with a significant portion of the excess positive charge located on one or more carbon atoms

A carbocation is an ion with a positively charged carbon atom. Among the simplest examples are the methenium CH+
, methanium CH+
and vinyl C
cations. Occasionally, carbocations that bear more than one positively charged carbon atom are also encountered.

A rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. Often a substituent moves from one atom to another atom in the same molecule. In the example below the substituent R moves from carbon atom 1 to carbon atom 2:

Tiffeneau-Demjanov rearrangement.png

Early development of mechanism

Although chemists at the time knew very well what the product of a symmetrical 1-aminomethylcycloalcohol would be when exposed to nitrous acid, there was significant debate on the reaction's mechanism that lasted up until the 1980s. Scientists were puzzled over the array of products they would obtain when the reaction was performed on an unsymmetrical 1-aminomethylcycloalcohols and bridged cyclo-systems. Even today, experiments continue that are designed to shed light into the more subtle mechanistic features of this reaction and increase yields of desired expanded products.

In 1960, Peter A.S. Smith and Donald R. Baer, both of the University of Michigan, published a treatise on the TDR. Their proposed mechanism contained within provides an excellent perspective of scientist's understanding of the TDR at that time.

University of Michigan Public research university in Ann Arbor, Michigan, United States

The University of Michigan, often simply referred to as Michigan, is a public research university in Ann Arbor, Michigan. The university is Michigan's oldest; it was founded in 1817 in Detroit, as the Catholepistemiad, or University of Michigania, 20 years before the territory became a state. The school was moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet spread out over a Central Campus and North Campus, two regional campuses in Flint and Dearborn, and a Center in Detroit. The university is a founding member of the Association of American Universities.

The mechanism proposed by Baer and Smith was the summation of several sources of information. Since the early 1950s, it had been postulated by many that the TDR mechanism involved a carbonium ion . However, a major breakthrough in the development of the TDR mechanism came with the improved understanding of the phenomenon behind amine groups reacting with nitrous acid. Meticulous kinetic studies throughout the late 1950s led scientists to believe that nitrous acid reacts with an amine by first producing a nitrous acid derivative, potentially N2O3. While this derivative would prove incorrect as it relates to TDR, scientists of the time still correctly came to the conclusion that the derivative would react with the amine to produce the diazonium ion. The inferred instability of this diazonium ion gave solid evidence for the existence of a carbocation in the TDR mechanism.

Another piece of information that had implications in the mechanism of the TDR was the simple fact that the reaction proceeds more easily with the conditions discovered by Tiffeneau. By placing an alcohol on the carbon on the reagent, reaction rates and yields are much improved to those of the simple Demjanov rearrangement. Moreover, few unwanted by products are formed, such as olefins. These aforementioned observations were the center around which Smith and Baer's mechanism was constructed. It is easy to see that hydrogen's presence would mean that hydride shifts would occur in competition with carbon shifts during the course of the reaction. Moreover, this shift is likely as it would move place positive charge from a 1° carbon to a 3° carbon. In a mildly basic solvent such as water, this new intermediate could easily produce an olefin via an E1-like reaction.

Such olefins are typically seen in simple Demjanov rearrangements but are not seen in the TDR. The alcohol's presence explains how this E1 reaction does not occur. Moreover, having an alcohol present puts the developing positive charge of the ring enlarged intermediate next to an oxygen. This would be more favorable than hydrogen as oxygen can lend electron density to the carbonium ion via resonance.

This again favors ring expansion and is another caveat that shows how it incorporates higher yields of the TDR over the Demjanov rearrangement.

Smith and Baer' mechanism was also able to account for other observations of the time. Tiffeneau–Demjanov rearrangements of1-aminomethylcycloalkanols with alkyl substitutions on the side aminomethyl chain had been accomplished by many scientists before 1960. Smith and Baer investigated how such substitution affects the TDR by synthesizing various 1-hydroxycyclohexylbenzyl-amines and exposing them to TDR conditions .

Seeing as six member rings are routinely enlarged by the TDR, one might expect the reaction to occur. However instead of the anticipated ring enlargements, only diols are seen as products. Five member analogues to the above substituted reagents enlarge under TDR conditions. Alkyl substitutions as opposed to aryl substitutions result in diminished TDRs. Smith and Baer assert that these observations support their mechanism. Since substitution stabilizes the carbonium ion after daminification, the resulting carbonium ion is more likely to react with a nucleophile present (water in this case) and not undergo rearrangement. Five member rings rearrange due to the ring strain encouraging the maneuver. This strain makes the carbocation unstable enough to cause a carbon to shift.

Problems with the early mechanism

As definitive as Smith and Baer's early mechanism seems, there are several phenomena that it did not account for. The problem with their mechanism mainly focused around TDR precursors that have alkyl substituents on the ring. When said substituent is placed on the ring as to make the molecule still symmetric, one product is formed upon exposure to TDR conditions. However, if the alkyl is placed on the ring as to make the molecule unsymmetric, several products could form.

The principal method for synthesizing the starting amino alcohols is through the addition of cyanide anion to a cyclic ketone. The resulting hydroxynitrile is then reduced, forming the desired amino alcohol. This method forms diastereomers, possibly affecting the regioselectivity of the reaction. For nearly all asymmetric precursors, one product isomer is formed preferentially to another. As TDR was routinely being used to synthesize various steroids and bicyclic compounds, their precursors were rarely symmetric. As a result, a lot of time was spent identifying and separating products. At the time, this phenomenon baffled chemists. Due to spectroscopic and separation limitations, it was very difficult for scientists to probe this caveat of the TDR in a sophisticated way. However, most believed that what was governing preferential product formation involved the migratory aptitudes of competing carbons and/or steric control. Migratory aptitude made reference to the possibility that the preferred product of the reaction was the result of an initial stability of one carbon migrating in preference to another. This possibility was more the belief and subject of research of earlier scientists, including Marc Tiffeneau himself. However, in the early 1960s, more and more scientists were starting to think that steric factors were the driving force behind the selectivity for this reaction.

Sterics and Stereochemistry in the mechanism

As chemists continued to probe this reaction with more and more advanced technology and methods, other factors began to be tabled as possibilities for what was controlling product formation of unsymmetrical amino alcohols. In 1963, Jones and Price of the University of Toronto demonstrated how remote substituents in steroids play a role in product distribution . In 1968, Carlson and Behn of the University of Kansas discovered that experimental conditions also play a role. These latter scientists established that in ring extension via the TDR, initial temperature and concentration of reagents all played a role in eventual product distribution . Indeed, other avenues of the TDR were being explored and charted.

However, Carlson and Behn did manage to report a significant breakthrough in the realm of sterics and migratory aptitudes as they relate to the TDR. As it might be expected based on electronic reasoning, the more highly substituted carbon should migrate preferentially to a less substituted carbon. However, this is not always seen and often accounts of migratory aptitudes show fickle preferences. Thus, the authors assert that such aptitudes are of little importance. Stericlly, thanks chiefly to improved spectroscopic methods, they were able to confirm that having the amine group equatorial to the alkane ring corresponded to drastically different product yields.

According to the authors, the preferential formation of D from A does not reflect a preferred conformation of A. Their modeling indicates that both A and B are initially just as likely to become C. He concludes that there must be a steric interaction to develop in the transition state during migration that makes A preferentially form D when exposed to the TDR conditions. The idea that sterics played a factor during migration and was not a factor just at the beginning to the reaction, was new. Carlson and Behn speculate that the factor might lay in transannular hydrogen interactions along the path of migration. Their modeling suggested that this interaction may be more severe for A forming C. However, they are not certain enough to offer this as a definitive explanation as they concede that more subtle conformational and/or electronic effects could be at work as well.

At this point, the mechanism proposed by Smith and Baer seemed to be on its way out. If steric interactions relating to carbon migration during the reaction's transition state were important, this did not support the carbocation envisioned by Smith and Baer. Research around bi-cyclics during the 1970s would shed even more light into the TDR mechanism. In 1973, McKinney and Patel of Marquette University published an article in which they used the TDR for expanding norcamphor and dehydronorcamphor. Two of their observations are important. One centers on the expansion of exo and endo-2-norbornylcarbinyl systems.

One might expect in (I) that A would migrate in preference to B seeing as such a migration would place the developing charge on a 2° carbon and pass the specie through a more favorable chair-like intermediate. This is not seen. Only 38% of the product exhibits A migration. To account for why A migration is not dominant in the expansion of I, the authors assert a least movement argument . Simply put, the migration of the non-bridgehead carbon provides for the least amount of total atom movement, something that plays into the energetics of the reaction. This least movement consideration would prove important in the TDR mechanism as it accounts for products with intermediates passing through unfavorable conformations.

However, McKinney and Patel also confirm that traditional factors such as developing positive charge stability still play a crucial role in the direction of expansion. They accomplish this by expanding 2-norbornenyl carbinyl systems.

By adding a simple double bond to these systems, the authors see a significant increase in the migration of the bridgehead carbon A (50% in this case.) The authors attribute this jump in migration to the fact that this bride carbon migrating allows the developing positive charge to be stabilizing by resonance contributed by the double bond .Therefore, carbocation/ positive charge effects can not be ignored in the discussion of the factors influencing product distribution.

Later mechanistic studies

As evidence continued to mount during the years after Smith and Baer's publication in 1960, it was obvious that the TDR mechanism would need revisiting. This new mechanism would have to de-stress the carbocation as there are other factors that influence ring expansion. Orientation of the developing diazonium ion, the possibility of steric interactions during the reaction, and atomic movement would all have to be included. In 1982, Cooper and Jenner published such a mechanism .[ citation needed ] Their mechanism has stood to this day as the current understanding of the TDR .

The most obvious departure from Smith and Baer's mechanism is that Cooper and Jenner represent the diazonium departure and subsequent alkyl shift as a concerted step. Such a feature allows for sterics, orientations, and atomic movement to be factors. However, distribution of positive charge is still important in this mechanism as it does explain much of the observed behavior of the TDR. Another observation that should be made is that there is no preference given to these aforementioned factors in the mechanism. That is to say, even today it is very difficult to predict which carbon will migrate preferentially. Indeed, the TDR has become more useful as spectroscopic and separation techniques have advanced. Such advancements allows for the quick identification and isolation of desired products.

Since the mid-1980s, most organic chemists have resigned themselves to accepting the fact that the TDR is governed by several factors that often seem fickle in importance. As a result, much research is now being directed towards the development of techniques to increase migration of a specific carbon. One example of such an effort has recently come out of the University of Melbourne.

Noting that group 4 metal substituents can stabilize positive charge that is β to them, Chow, McClure, and White attempted to use this to direct TDRs in 2004.{ [6] } They hypothesized that placing a silicon trimethyl group β to a carbon that can migrate would increase such migration .

Their results show that this does occur to a small extent. The authors believe that the reason why the carbon migration increases only slightly is that positive charge is not a large factor in displacing the diazonium ion. Since this ion is such a good leaving group, it requires very little 'push' from the developing carbon-carbon bond. Their results again highlight the fact that multiple factors determine the direction of carbon migration.

See also

Related Research Articles

In organic and inorganic chemistry, nucleophilic substitution is a fundamental class of reactions in which an electron rich nucleophile selectively bonds with or attacks the positive or partially positive charge of an atom or a group of atoms to replace a leaving group; the positive or partially positive atom is referred to as an electrophile. The whole molecular entity of which the electrophile and the leaving group are part is usually called the substrate. The nucleophile essentially attempts to replace the leaving group as the primary substituent in the reaction itself, as a part of another molecule.

Elimination reaction type of organic reaction in which two substituents are removed from a molecule in either a one or two-step mechanism

An elimination reaction is a type of organic reaction in which two substituents are removed from a molecule in either a one or two-step mechanism. The one-step mechanism is known as the E2 reaction, and the two-step mechanism is known as the E1 reaction. The numbers do not have to do with the number of steps in the mechanism, but rather the kinetics of the reaction, bimolecular and unimolecular respectively. In cases where the molecule is able to stabilize an anion but possesses a poor leaving group, a third type of reaction, E1CB, exists. Finally, the pyrolysis of xanthate and acetate esters proceed through an "internal" elimination mechanism, the Ei mechanism.

The SN1 reaction is a substitution reaction in organic chemistry. "SN" stands for "nucleophilic substitution", and the "1" says that the rate-determining step is unimolecular. Thus, the rate equation is often shown as having first-order dependence on electrophile and zero-order dependence on nucleophile. This relationship holds for situations where the amount of nucleophile is much greater than that of the carbocation intermediate. Instead, the rate equation may be more accurately described using steady-state kinetics. The reaction involves a carbocation intermediate and is commonly seen in reactions of secondary or tertiary alkyl halides under strongly basic conditions or, under strongly acidic conditions, with secondary or tertiary alcohols. With primary and secondary alkyl halides, the alternative SN2 reaction occurs. In inorganic chemistry, the SN1 reaction is often known as the dissociative mechanism. This dissociation pathway is well-described by the cis effect. A reaction mechanism was first proposed by Christopher Ingold et al. in 1940. This reaction does not depend much on the strength of the nucleophile unlike the SN2 mechanism. This type of mechanism involves two steps. The first step is the reversible ionization of Alkyl halide in the presence of aqueous acetone or an aqueous ethyl alcohol. This step provides a carbocation as an intermediate.

S<sub>N</sub>2 reaction A substitution reacion with a tetrahedral intermediate, also denoted as SN2Th

The SN2 reaction is a type of reaction mechanism that is common in organic chemistry. In this mechanism, one bond is broken and one bond is formed synchronously, i.e., in one step. SN2 is a kind of nucleophilic substitution reaction mechanism. Since two reacting species are involved in the slow (rate-determining) step, this leads to the term substitution nucleophilic (bi-molecular) or SN2, the other major kind is SN1. Many other more specialized mechanisms describe substitution reactions.

Beckmann rearrangement Chemical rearrangement

The Beckmann rearrangement, named after the German chemist Ernst Otto Beckmann (1853–1923), is a rearrangement of an oxime functional group to substituted amides. The rearrangement has also been successful performed on haloimines and nitrones. Cyclic oximes and haloimines yield lactams.

The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reactions. Both proceed by electrophilic aromatic substitution.

Substitution reaction is a chemical reaction during which one functional group in a chemical compound is replaced by another functional group. Substitution reactions are of prime importance in organic chemistry. Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved. There are other classifications as well that are mentioned below.

The diazogroup is an organic moiety consisting of two linked nitrogen atoms (azo) at the terminal position. Overall charge neutral organic compounds containing the diazo group bound to a carbon atom are called diazo compounds or diazoalkanes and are described by the general structural formula is R2C=N+=N. The simplest example of a diazo compound is diazomethane. They should be distinguished from diazonium compounds, which have the same terminal azo group but bear an overall positive charge or azo compounds in which the azo group bridges two organic substituents. The electronic structure of diazo compounds is characterized by π electron density delocalized over the α-carbon and two nitrogen atoms, along with an orthogonal π system with electron density delocalized over only the terminal nitrogen atoms. Because all octet-rule satisfying resonance forms of diazo compounds have formal charges, they are members of a class of compounds known as 1,3-dipoles. Some of the most stable diazo compounds are α-diazo-β-diketones and α-diazo-β-diesters with the electron density further delocalized into an electron-withdrawing carbonyl group. In contrast, most diazoalkanes without electron-withdrawing substituents, including diazomethane itself, are explosive. A commercially relevant diazo compound is ethyl diazoacetate (N2CHCOOEt). A group of isomeric compounds with only few similar properties are the diazirines, where the carbon and two nitrogens are linked as a ring.

An allylic rearrangement or allylic shift is an organic reaction in which the double bond in an allyl chemical compound shifts to the next carbon atom. It is encountered in nucleophilic substitution.

Wagner–Meerwein rearrangement organic reaction

A Wagner–Meerwein rearrangement is a class of carbocation 1,2-rearrangement reactions in which a hydrogen, alkyl or aryl group migrates from one carbon to a neighboring carbon. They can be described as cationic [1,2]-sigmatropic rearrangements, proceeding suprafacially and with stereochemical retention. As such, a Wagner–Meerwein shift is a thermally allowed pericyclic process with the Woodward-Hoffmann symbol [ω0s + σ2s]. They are usually facile, and in many cases, they can take place at temperatures as low as –120 °C. The reaction is named after the Russian chemist Yegor Yegorovich Vagner; he had German origin and published in German journals as Georg Wagner; and Hans Meerwein.

Ring expansion and ring contraction reactions in the course of organic synthesis refer to a set of reactions which can lead to the expansion or contraction of an existing ring. This often makes it possible to access structures that would be difficult if not impossible to synthesise with single cyclization reactions. Ring expansions are valuable because they allow access to larger systems that are difficult to synthesize through a single cyclization due to the slow rate of formation. Ring contractions are useful for making smaller, more strained rings from larger rings. Expansions are classified by the mechanism of expansion and the atom(s) added; contractions are characterized simply by the reactive intermediate which performs the contraction.

Carbenium ion

A carbenium ion is a positive ion with the structure RR′R″C+, that is, a chemical species with a trivalent carbon that bears a +1 formal charge.

In organic chemistry, the term 2-norbornyl cation describes one of the three carbocations formed from derivatives of norbornane. Though 1-norbornyl and 7-norbornyl cations have been studied, the most extensive studies and vigorous debates have been centered on the exact structure of the 2-norbornyl cation.

Pinacol rearrangement Pinacol-Pinacolone rearrangement

The pinacol–pinacolone rearrangement is a method for converting a 1,2-diol to a carbonyl compound in organic chemistry. The 1,2-rearrangement takes place under acidic conditions. The name of the rearrangement reaction comes from the rearrangement of pinacol to pinacolone.

The benzilic acid rearrangement is formally the rearrangement reaction of 1,2-diketones into α-hydroxy–carboxylic acids using base. This reaction receives its name from the reaction of benzil with potassium hydroxide to form benzilic acid. First performed by Justus von Liebig in 1838, it is a classic reaction in organic synthesis and has been reviewed many times before. It can be viewed as an intramolecular disproportionation reaction, as one carbon center is oxidized while the other is reduced.

The semipinacol rearrangement is a rearrangement reaction in organic chemistry involving a heterosubstituted alcohol of the type R1R2(HO)C–C(X)R3R4. The hetero substituent can be a halogen (Cl, Br, I), a tosylate, a mesylate or a thiol group. This reaction proceeds by removal of the leaving group X forming a carbocation as electron deficient center. One of the adjacent alkyl groups then migrates to the positive carbon in a 1,2-shift. Simultaneously with the shift, a pi bond forms from the oxygen to carbon, assisting in driving the migrating group off its position. The result is a ketone or aldehyde. In another definition all semipinacol rearrangements "share a common reactive species in which an electrophilic carbon center, including but not limited to carbocations, is vicinal to an oxygen-containing carbon and can drive the 1,2-migration of a C–C or C–H bond to terminate the process, generating a carbonyl group ".

Electrophilic aromatic substitution is an organic reaction in which an atom that is attached to an aromatic system is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration, aromatic halogenation, aromatic sulfonation, and acylation and alkylating Friedel–Crafts reaction.


  1. Smith, P. A. S.; Baer, D. R. Org. React1960, 11, 157–188. (Review)
  2. Coveney, D. J. Compr. Org. Synth.1991, 3, 781–782. (Review)
  3. Fattori, D. et al. Tetrahedron 1993, 49, 1649. (Review)
  4. Marc Tiffeneau; Paul Weill; Bianca Tchoubar (1937). "Isomérisation de l'oxyde de méthylène cyclohexane en hexahydrobenzaldéhyde et désamination de l'aminoalcool correspondant en cycloheptanone". Comptes Rendus . 205: 54–56.
  5. Jack Li, Jie. (2006). Name Reactions (Third ed.). Berlin: Springer.CS1 maint: Uses authors parameter (link)
  6. 157 L. Chow, M. McClure, J. M. White, Silicon and Tin-Directed Tiffeneau Demjanov Reaction, Organic and Biomolec. Chem., 2004, 648–651