Tim Cochran

Last updated
Tim Cochran
Tim Cochran Multnomah Falls Oregon July 16 2012.jpg
Tim Cochran at Multnomah Falls in 2012
Born(1955-04-07)April 7, 1955
DiedDecember 16, 2014(2014-12-16) (aged 59)
Nationality American
Alma mater University of California
Known for Cochran–Orr–Teichner (solvable) filtration
Scientific career
Fields Mathematics
Institutions Rice University
Doctoral advisor Robion Kirby
Doctoral students Shelly Harvey

Thomas "Tim" Daniel Cochran (April 7, 1955 – December 16, 2014) was a professor of mathematics at Rice University specializing in topology, especially low-dimensional topology, the theory of knots and links and associated algebra.


Education and career

Cochran in 1986 Tim Cochran 1986 (enlarged headshot).jpg
Cochran in 1986

Tim Cochran was a valedictorian for the Severna Park High School Class of 1973. Later, he was an undergraduate at the Massachusetts Institute of Technology, and received his Ph.D. from the University of California, Berkeley in 1982 (Embedding 4-manifolds in S5). [1] He then returned to MIT as a C.L.E. Moore Postdoctoral Instructor from 1982 to 1984. He was an NSF postdoctoral fellow from 1985 to 1987. Following brief appointments at Berkeley and Northwestern University, he started at Rice University as an associate professor in 1990. He became a full professor at Rice University in 1998. He died unexpectedly, aged 59, on December 16, 2014, [2] while on a year-long sabbatical leave supported by a fellowship from the Simons Foundation. [3]

Research contributions

With his coauthors Kent Orr and Peter Teichner, Cochran defined the solvable filtration of the knot concordance group, whose lower levels encapsulate many classical knot concordance invariants.

Cochran was also responsible for naming the slam-dunk move for surgery diagrams in low-dimensional topology.

Awards and honors

While at Rice, he was named an Outstanding Faculty Associate (1992–93), and received the Faculty Teaching and Mentoring Award from the Rice Graduate Student Association (2014) [4]

He was named a fellow of the American Mathematical Society [5] in 2014, for contributions to low-dimensional topology, specifically knot and link concordance, and for mentoring numerous junior mathematicians.

Selected publications

Related Research Articles

<span class="mw-page-title-main">Differential topology</span> Branch of mathematics

In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology.

In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one.

In topology, a branch of mathematics, a Dehn surgery, named after Max Dehn, is a construction used to modify 3-manifolds. The process takes as input a 3-manifold together with a link. It is often conceptualized as two steps: drilling then filling.

In knot theory, a virtual knot is a generalization of knots in 3-dimensional Euclidean space, R3, to knots in thickened surfaces modulo an equivalence relation called stabilization/destabilization. Here is required to be closed and oriented. Virtual knots were first introduced by Kauffman (1999).

In mathematics, a Legendrian knot often refers to a smooth embedding of the circle into , which is tangent to the standard contact structure on . It is the lowest-dimensional case of a Legendrian submanifold, which is an embedding of a k-dimensional manifold into a (2k+1)-dimensional contact manifold that is always tangent to the contact hyperplane.

In the mathematical field of Riemannian geometry, M. Gromov's systolic inequality bounds the length of the shortest non-contractible loop on a Riemannian manifold in terms of the volume of the manifold. Gromov's systolic inequality was proved in 1983; it can be viewed as a generalisation, albeit non-optimal, of Loewner's torus inequality and Pu's inequality for the real projective plane.

Michel André Kervaire was a French mathematician who made significant contributions to topology and algebra.

In mathematics, the Kervaire invariant is an invariant of a framed -dimensional manifold that measures whether the manifold could be surgically converted into a sphere. This invariant evaluates to 0 if the manifold can be converted to a sphere, and 1 otherwise. This invariant was named after Michel Kervaire who built on work of Cahit Arf.

André Haefliger was a Swiss mathematician who worked primarily on topology.

In knot theory, an area of mathematics, the link group of a link is an analog of the knot group of a knot. They were described by John Milnor in his Ph.D. thesis,. Notably, the link group is not in general the fundamental group of the link complement.

<span class="mw-page-title-main">Wolfgang Lück</span> German mathematician

Wolfgang Lück is a German mathematician who is an internationally recognized expert in algebraic topology.

In mathematics, and particularly homology theory, Steenrod's Problem is a problem concerning the realisation of homology classes by singular manifolds.

In mathematics, specifically in differential topology, a Kervaire manifold is a piecewise-linear manifold of dimension constructed by Michel Kervaire (1960) by plumbing together the tangent bundles of two -spheres, and then gluing a ball to the result. In 10 dimensions this gives a piecewise-linear manifold with no smooth structure.

<span class="mw-page-title-main">Matthias Kreck</span> German mathematician

Matthias Kreck is a German mathematician who works in the areas of Algebraic Topology and Differential topology. From 1994 to 2002 he was director of the Oberwolfach Research Institute for Mathematics and from October 2006 to September 2011 he was the director of the Hausdorff Center for Mathematics at the University of Bonn, where he is currently a professor.

Shelly Lynn Harvey is a professor of Mathematics at Rice University. Her research interests include knot theory, low-dimensional topology, and group theory.

Martin George Scharlemann is an American topologist who is a professor at the University of California, Santa Barbara. He obtained his Ph.D. from the University of California, Berkeley under the guidance of Robion Kirby in 1974.

Paul Alexander SchweitzerSJ is an American mathematician specializing in differential topology, geometric topology, and algebraic topology.

Chern's conjecture for affinely flat manifolds was proposed by Shiing-Shen Chern in 1955 in the field of affine geometry. As of 2018, it remains an unsolved mathematical problem.

Rachel Roberts is an American mathematician specializing in low-dimensional topology, including foliations and contact geometry. She is the Elinor Anheuser Professor of Mathematics at Washington University in St. Louis.

<span class="mw-page-title-main">Dan Burghelea</span> Romanian-American mathematician

Dan Burghelea is a Romanian-American mathematician, academic, and researcher. He is an Emeritus Professor of Mathematics at Ohio State University.