Since the 19th century, a significant amount of research has been conducted on the Cretaceous–Paleogene extinction event, the mass extinction that ended the dinosaur-dominated Mesozoic Era and set the stage for the Age of Mammals, or Cenozoic Era. A chronology of this research is presented here.
Paleontologists have recognized that a significant transition occurred between the Mesozoic and Cenozoic eras at least since the 1820s. [1] Around this time dinosaur fossils were first being described in the scientific literature. Nevertheless, so few dinosaurs were known that the significance of their passing went unrecognized and little scientific effort was exerted toward finding an explanation. [2] As more and more different kinds of dinosaurs were discovered, their extinction and replacement by mammals was recognized as significant but dismissed with little examination as a natural consequence of the mammals' supposed innate superiority. [3] Consequently, paleontologist Michael J. Benton has called the years up to 1920 as the "Nonquestion Phase" of Cretaceous–Paleogene extinction research. [4]
Ideas that evolution might proceed along pre-ordained patterns or that evolutionary lineages might age, deteriorate, and die like individual animals became popular starting in the late 19th century, but were superseded by the Neo-Darwinian synthesis. [5] The aftermath of this transition brought renewed interest to the extinction at the end of the Cretaceous. [6] Paleontologists began dabbling in the subject, proposing environmental changes during the Cretaceous like mountain-building, dropping temperatures or volcanic eruptions as explanation for the extinction of the dinosaurs. [7] Nevertheless, much of the research occurring during this period lacked rigor, evidential support or depended on tenuous assumptions. [8] Michael J. Benton called the years between 1920 and 1970 the "Dilettante Phase" of Cretaceous–Paleogene extinction research. [4]
In 1970, paleontologists began studying the Cretaceous–Paleogene extinction in a detailed, rigorous way. [9] Benton considered this to be the beginning of the "Professional Phase" of Cretaceous–Paleogene extinction research. Early in this phase, the pace of the extinctions and the potential role of the Deccan Traps volcanism in India were major subjects of interest. [10] In 1980, father and son duo Luis and Walter Alvarez reported anomalously high levels of the platinum group metal iridium from the K–Pg boundary, but because iridium is rare in Earth's crust they argued that an asteroid impact was needed to account for it. This suggestion set off a bitter controversy. Evidence for an impact continued to mount, like the discovery of shocked quartz at the K–Pg boundary. In 1991, Alan Hildebrand and William Boynton reported the Chicxulub crater in the Yucatan peninsula of Mexico as a probable impact site. While the controversy continued, the accumulating evidence gradually began to sway the scientific community toward the Alvarez hypothesis. In 2010, an international panel of researchers concluded that impact best explained the extinction event and that Chicxulub was indeed the resulting crater. [11] Because the estimated date of the object's impact and the Cretaceous–Paleogene boundary (K–Pg boundary) coincide, there is now a scientific consensus that this impact was the Cretaceous–Paleogene extinction event which caused the death of most of the planet's non-avian dinosaurs and many other species. [12] [13] The impactor's crater is just over 177 kilometers in diameter, [14] making it the second largest known impact crater on Earth.
2023 in science |
---|
Fields |
Technology |
Social sciences |
Paleontology |
Extraterrestrial environment |
Terrestrial environment |
Other/related |
The Deccan Traps is a large igneous province of west-central India. It is one of the largest volcanic features on Earth, taking the form of a large shield volcano. It consists of numerous layers of solidified flood basalt that together are more than about 2,000 metres (6,600 ft) thick, cover an area of about 500,000 square kilometres (200,000 sq mi), and have a volume of about 1,000,000 cubic kilometres (200,000 cu mi). Originally, the Deccan Traps may have covered about 1,500,000 square kilometres (600,000 sq mi), with a correspondingly larger original volume. This volume overlies the Archean age Indian Shield, which is likely the lithology the province passed through during eruption. The province is commonly divided into four subprovinces: the main Deccan, the Malwa Plateau, the Mandla Lobe, and the Saurashtran Plateau.
An impact event is a collision between astronomical objects causing measurable effects. Impact events have physical consequences and have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or meteoroids and have minimal effect. When large objects impact terrestrial planets such as the Earth, there can be significant physical and biospheric consequences, though atmospheres mitigate many surface impacts through atmospheric entry. Impact craters and structures are dominant landforms on many of the Solar System's solid objects and present the strongest empirical evidence for their frequency and scale.
The Chicxulub crater is an impact crater buried underneath the Yucatán Peninsula in Mexico. Its center is offshore near the community of Chicxulub, after which it is named. It was formed slightly over 66 million years ago when a large asteroid, about ten kilometers in diameter, struck Earth. The crater is estimated to be 180 kilometers in diameter and 20 kilometers in depth. It is the second largest confirmed impact structure on Earth, and the only one whose peak ring is intact and directly accessible for scientific research.
An impact winter is a hypothesized period of prolonged cold weather due to the impact of a large asteroid or comet on the Earth's surface. If an asteroid were to strike land or a shallow body of water, it would eject an enormous amount of dust, ash, and other material into the atmosphere, blocking the radiation from the Sun. This would cause the global temperature to decrease drastically. If an asteroid or comet with the diameter of about 5 km (3.1 mi) or more were to hit in a large deep body of water or explode before hitting the surface, there would still be an enormous amount of debris ejected into the atmosphere. It has been proposed that an impact winter could lead to mass extinction, wiping out many of the world's existing species. The Cretaceous–Paleogene extinction event probably involved an impact winter, and led to mass extinction of most tetrapods weighing more than 25 kilograms.
Walter Alvarez is a professor in the Earth and Planetary Science department at the University of California, Berkeley. He is most widely known for the theory that dinosaurs were killed by an asteroid impact, developed in collaboration with his father, Nobel Prize–winning physicist Luis Alvarez.
Chicxulub Pueblo is a town, and surrounding municipality of the same name, in the Mexican state of Yucatán.
The Late Cretaceous is the younger of two epochs into which the Cretaceous Period is divided in the geologic time scale. Rock strata from this epoch form the Upper Cretaceous Series. The Cretaceous is named after creta, the Latin word for the white limestone known as chalk. The chalk of northern France and the white cliffs of south-eastern England date from the Cretaceous Period.
The Shiva crater is the claim by paleontologist Sankar Chatterjee and colleagues that the Bombay High and Surat Depression on the Indian continental shelf west of Mumbai, India represent a 500-kilometre (310 mi) impact crater, that formed around the Cretaceous-Paleogene boundary. Chatterjee and colleagues have claimed that this could have contributed to the K-Pg extinction event. Other scholars have questioned the claims, finding that there is no evidence of an impact structure.
The Alvarez hypothesis posits that the mass extinction of the non-avian dinosaurs and many other living things during the Cretaceous–Paleogene extinction event was caused by the impact of a large asteroid on the Earth. Prior to 2013, it was commonly cited as having happened about 65 million years ago, but Renne and colleagues (2013) gave an updated value of 66 million years. Evidence indicates that the asteroid fell in the Yucatán Peninsula, at Chicxulub, Mexico. The hypothesis is named after the father-and-son team of scientists Luis and Walter Alvarez, who first suggested it in 1980. Shortly afterwards, and independently, the same was suggested by Dutch paleontologist Jan Smit.
Gerta Keller is a geologist and paleontologist who contests the Alvarez hypothesis that the impact of the Chicxulub impactor, or another large celestial body, directly caused the Cretaceous–Paleogene extinction event. Keller maintains that such an impact predates the mass extinction and that Deccan volcanism and its environmental consequences were the most likely major cause, but possibly exacerbated by the impact.
The term iridium anomaly commonly refers to an unusual abundance of the chemical element iridium in a layer of rock strata at the Cretaceous–Paleogene (K–Pg) boundary. The unusually high concentration of a rare metal like iridium is often taken as evidence for an extraterrestrial impact event.
The Cretaceous–Paleogene (K–Pg) boundary, formerly known as the Cretaceous–Tertiary (K–T) boundary, is a geological signature, usually a thin band of rock containing much more iridium than other bands. The K–Pg boundary marks the end of the Cretaceous Period, the last period of the Mesozoic Era, and marks the beginning of the Paleogene Period, the first period of the Cenozoic Era. Its age is usually estimated at around 66 million years, with radiometric dating yielding a more precise age of 66.043 ± 0.011 Ma.
The Baptistina family is an asteroid family of more than 2500 members that was probably produced by the breakup of an asteroid 170 km (110 mi) across 80 million years ago following an impact with a smaller body. The two largest presumed remnants of the parent asteroid are main-belt asteroids 298 Baptistina and 1696 Nurmela. The Baptistina family is part of the larger Flora clan. It was briefly speculated that the Chicxulub impactor was part of the Baptistina family of asteroids, but this was disproven in 2011 using data from the Wide-field Infrared Survey Explorer (WISE).
The climate across the Cretaceous–Paleogene boundary is very important to geologic time as it marks a catastrophic global extinction event. Numerous theories have been proposed as to why this extinction event happened including an asteroid known as the Chicxulub asteroid, volcanism, or sea level changes. While the mass extinction is well documented, there is much debate about the immediate and long-term climatic and environmental changes caused by the event. The terrestrial climates at this time are poorly known, which limits the understanding of environmentally driven changes in biodiversity that occurred before the Chicxulub crater impact. Oxygen isotopes across the K–T boundary suggest that oceanic temperatures fluctuated in the Late Cretaceous and through the boundary itself. Carbon isotope measurements of benthic foraminifera at the K–T boundary suggest rapid, repeated fluctuations in oceanic productivity in the 3 million years before the final extinction, and that productivity and ocean circulation ended abruptly for at least tens of thousands of years just after the boundary, indicating devastation of terrestrial and marine ecosystems. Some researchers suggest that climate change is the main connection between the impact and the extinction. The impact perturbed the climate system with long-term effects that were much worse than the immediate, direct consequences of the impact.
The Cretaceous–Paleogene (K–Pg) extinction event, also known as the Cretaceous–Tertiary(K–T)extinction, was a sudden mass extinction of three-quarters of the plant and animal species on Earth, approximately 66 million years ago. The event caused the extinction of all non-avian dinosaurs. Most other tetrapods weighing more than 25 kilograms also became extinct, with the exception of some ectothermic species such as sea turtles and crocodilians. It marked the end of the Cretaceous Period, and with it the Mesozoic era, while heralding the beginning of the Cenozoic era, which continues to this day.
T. rex and the Crater of Doom is a nonfiction book by professor Walter Alvarez that was published by Princeton University Press in 1997. The book discusses the research and evidence that led to the creation of the Alvarez hypothesis, which explains how an impact event was the main cause that resulted in the Cretaceous–Paleogene extinction event.
Tanis is a site of paleontological interest in southwestern North Dakota, United States. It is part of the heavily studied Hell Creek Formation, a geological region renowned for many significant fossil discoveries from the Upper Cretaceous and lower Paleocene. Uniquely, Tanis appears to record in detail, extensive evidence of the effects and characteristics of the giant Chicxulub asteroid impact which struck the Gulf of Mexico 66.043 million years ago, and wiped out all non-avian dinosaurs and many other species. The extinction event caused by this impact began the Cenozoic, in which mammals - including humans - would eventually come to dominate life on Earth.
Jan Smit is a Dutch paleontologist. He was affiliated with the Faculty of Earth and Life Sciences at the Vrije Universiteit Amsterdam from 2003 to 2013 as a professor of event stratigraphy, studying rapid changes in the geological record related to mass extinctions.
Alan Russell Hildebrand is a planetary scientist and Associate Professor in the Department of Geoscience at the University of Calgary. He has specialized in the study of asteroid impact cratering, fireballs and meteorite recovery. His work has shed light on the extinction event caused by the Chicxulub asteroid at the end of the Cretaceous period. Hildebrand is one of the leaders of the Prairie Meteorite Network search project.
Chicxulub Puerto is a small coastal town in Progreso Municipality in the Mexican state of Yucatán. It is located on the Gulf of Mexico, in the northwestern region of the state about 8 km east of the city port of Progreso, the municipality seat, and 42 km north of the city of Mérida, the state capital. According to the INEGI census conducted in 2020, the port town had a population of 7,591 inhabitants.