Timeline of low-temperature technology

Last updated

The following is a timeline of low-temperature technology and cryogenic technology (refrigeration down to close to absolute zero, i.e. –273.15 °C, –459.67 °F or 0 K). [1] It also lists important milestones in thermometry, thermodynamics, statistical physics and calorimetry, that were crucial in development of low temperature systems.


Prior to the 19th century

19th century

20th century

21st century

See also

Related Research Articles

<span class="mw-page-title-main">Cryogenics</span> Study of the production and behaviour of materials at very low temperatures

In physics, cryogenics is the production and behaviour of materials at very low temperatures.

<span class="mw-page-title-main">Thermometer</span> Device to measure temperature

A thermometer is a device that measures temperature or a temperature gradient. A thermometer has two important elements: (1) a temperature sensor in which some change occurs with a change in temperature; and (2) some means of converting this change into a numerical value. Thermometers are widely used in technology and industry to monitor processes, in meteorology, in medicine, and in scientific research.

<span class="mw-page-title-main">Refrigeration</span> Process of moving heat from one location to another in controlled conditions

Refrigeration is any of various types of cooling of a space, substance, or system to lower and/or maintain its temperature below the ambient one. Refrigeration is an artificial, or human-made, cooling method.

A cryopump or a "cryogenic pump" is a vacuum pump that traps gases and vapours by condensing them on a cold surface, but are only effective on some gases. The effectiveness depends on the freezing and boiling points of the gas relative to the cryopump's temperature. They are sometimes used to block particular contaminants, for example in front of a diffusion pump to trap backstreaming oil, or in front of a McLeod gauge to keep out water. In this function, they are called a cryotrap, waterpump or cold trap, even though the physical mechanism is the same as for a cryopump.

<span class="mw-page-title-main">Dilution refrigerator</span> Cryogenic device for cooling to very low temperatures

A 3He/4He dilution refrigerator is a cryogenic device that provides continuous cooling to temperatures as low as 2 mK, with no moving parts in the low-temperature region. The cooling power is provided by the heat of mixing of the helium-3 and helium-4 isotopes.

<span class="mw-page-title-main">Chiller</span> Machine that removes heat from a liquid coolant via vapor compression

A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

<span class="mw-page-title-main">Cryostat</span>

A cryostat is a device used to maintain low cryogenic temperatures of samples or devices mounted within the cryostat. Low temperatures may be maintained within a cryostat by using various refrigeration methods, most commonly using cryogenic fluid bath such as liquid helium. Hence it is usually assembled into a vessel, similar in construction to a vacuum flask or Dewar. Cryostats have numerous applications within science, engineering, and medicine.

<span class="mw-page-title-main">Carl von Linde</span> German engineer and scientist

Carl Paul Gottfried von Linde was a German scientist, engineer, and businessman. He discovered a refrigeration cycle and invented the first industrial-scale air separation and gas liquefaction processes, which led to the first reliable and efficient compressed-ammonia refrigerator in 1876. These breakthroughs laid the backbone for the 1913 Nobel Prize in Physics that was awarded to Heike Kamerlingh Onnes. Linde was a member of scientific and engineering associations, including being on the board of trustees of the Physikalisch-Technische Reichsanstalt and the Bavarian Academy of Sciences and Humanities. Linde was also the founder of what is now known as Linde plc but formerly known (variously) as the Linde division of Union Carbide, Linde, Linde Air Products, Praxair, and others. Linde is the world's largest producer of industrial gases and ushered in the creation of the global supply chain for industrial gases. He was knighted in 1897 as Ritter von Linde.

<span class="mw-page-title-main">Refrigerator</span> Appliance for cold food storage

A refrigerator, colloquially fridge, is a commercial and home appliance consisting of a thermally insulated compartment and a heat pump that transfers heat from its inside to its external environment so that its inside is cooled to a temperature below the room temperature. Refrigeration is an essential food storage technique around the world. The lower temperature lowers the reproduction rate of bacteria, so the refrigerator reduces the rate of spoilage. A refrigerator maintains a temperature a few degrees above the freezing point of water. The optimal temperature range for perishable food storage is 3 to 5 °C. A similar device that maintains a temperature below the freezing point of water is called a freezer. The refrigerator replaced the icebox, which had been a common household appliance for almost a century and a half. The United States Food and Drug Administration recommends that the refrigerator be kept at or below 4 °C (40 °F) and that the freezer be regulated at −18 °C (0 °F).

<span class="mw-page-title-main">Industrial gas</span> Gaseous materials produced for use in industry

Industrial gases are the gaseous materials that are manufactured for use in industry. The principal gases provided are nitrogen, oxygen, carbon dioxide, argon, hydrogen, helium and acetylene, although many other gases and mixtures are also available in gas cylinders. The industry producing these gases is also known as industrial gas, which is seen as also encompassing the supply of equipment and technology to produce and use the gases. Their production is a part of the wider chemical Industry.

<span class="mw-page-title-main">Icemaker</span>

An icemaker, ice generator, or ice machine may refer to either a consumer device for making ice, found inside a home freezer; a stand-alone appliance for making ice, or an industrial machine for making ice on a large scale. The term "ice machine" usually refers to the stand-alone appliance.

<span class="mw-page-title-main">Icyball</span>

Icyball is a name given to two early refrigerators, one made by Australian Sir Edward Hallstrom in 1923, and the other design patented by David Forbes Keith of Toronto, and manufactured by American Powel Crosley Jr., who bought the rights to the device. Both devices are unusual in design in that they did not require the use of electricity for cooling. They can run for a day on a cup of kerosene, allowing rural users lacking electricity the benefits of refrigeration.

<span class="mw-page-title-main">Absorption refrigerator</span> Heat-source powered

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. The system uses two coolants, the first of which performs evaporative cooling and is then absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. The principle can also be used to air-condition buildings using the waste heat from a gas turbine or water heater. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Unlike more common vapor-compression refrigeration systems, an absorption refrigerator has no moving parts.

<span class="mw-page-title-main">Vapor-compression refrigeration</span> Refrigeration process

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.

<span class="mw-page-title-main">Absorption heat pump</span> Heat pump driven by thermal energy

An absorption heat pump (AHP) is a heat pump driven by thermal energy such as combustion of natural gas, steam solar-heated water, air or geothermal-heated water differently from compression heat pumps that are driven by mechanical energy. AHPs are more complex and require larger units compared to compression heat pumps. In particular, the lower electricity demand of such heat pumps is related to the liquid pumping only. Their applications are restricted to those cases when electricity is extremely expensive or a large amount of unutilized heat at suitable temperatures is available and when the cooling or heating output has a greater value than heat input consumed. Absorption refrigerators also work on the same principle, but are not reversible and cannot serve as a heat source.

<span class="mw-page-title-main">Heat pump and refrigeration cycle</span> Mathematical models of heat pumps and refrigeration

Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. A heat pump is a mechanical system that allows for the transmission of heat from one location at a lower temperature to another location at a higher temperature. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink, or a "refrigerator" or “cooler” if the objective is to cool the heat source. In either case, the operating principles are similar. Heat is moved from a cold place to a warm place.

<span class="mw-page-title-main">Pulse tube refrigerator</span> Device using sound waves to reduce heat

The pulse tube refrigerator (PTR) or pulse tube cryocooler is a developing technology that emerged largely in the early 1980s with a series of other innovations in the broader field of thermoacoustics. In contrast with other cryocoolers, this cryocooler can be made without moving parts in the low temperature part of the device, making the cooler suitable for a wide variety of applications.

An air separation plant separates atmospheric air into its primary components, typically nitrogen and oxygen, and sometimes also argon and other rare inert gases.

<span class="mw-page-title-main">Vuilleumier cycle</span>

TheVuilleumier cycle was patented by a Swiss-American engineer named Rudolph Vuilleumier in 1918. The purpose of Vuilleumier's machine was to create a heat pump that would use heat at high temperature as energy input. The Vuilleumier cycle...

utilize[s] working gas expansion and compression at three variable volume spaces in order to pump heat from a low to a moderate temperature level. The interesting characteristic of the Vuilleumier machine is that the induced volume variations are realized without the use of work, but thermally. This is the reason why it has a potential to operate at modern applications where the pollution of the environment is not a choice. It is a perfect candidate for such applications, as it consists only of metallic parts and inert gas. Using these units for heating and cooling buildings, large energy savings can be accomplished as they can be operated at small scale in common buildings or at large scale providing heat power to entire building blocks without using fossil fuels. The use of Vuilleumier machines for industrial applications or inside vehicles is also a feasible option. Another field where these machines have already been involved is cryogenics, as they are also able to provide refrigeration at very low temperatures like the very similar and well-known Stirling refrigerators.

<span class="mw-page-title-main">International Institute of Refrigeration</span> Company

The International Institute of Refrigeration (IIR), is an independent intergovernmental science and technology-based organization which promotes knowledge of refrigeration and associated technologies and applications on a global scale that improve quality of life in a cost-effective and environmentally sustainable manner, including:


  1. Martynov, A. V. (1976). "The terminology of low-temperature technology (discussion)". Chemical and Petroleum Engineering. 12 (5): 470–472. doi:10.1007/BF01146769. S2CID   110774259.
  2. Stephanie Dalley (1 January 2002). Mari and Karana: Two Old Babylonian Cities. Gorgias Press LLC. p. 91. ISBN   978-1-931956-02-4.
  3. T.D. McGee (1988) Principles and Methods of Temperature Measurement ISBN   0-471-62767-4
  4. Arora, Ramesh Chandra (30 March 2012). "Mechanical vapour compression refrigeration". Refrigeration and Air Conditioning. New Delhi, India: PHI Learning. p. 3. ISBN   978-81-203-3915-6.
  5. William Cullen, Of the Cold Produced by Evaporating Fluids and of Some Other Means of Producing Cold,in Essays and Observations Physical and Literary Read Before a Society in Edinburgh and Published by Them, II, (Edinburgh 1756)
  6. Taton, Rene. “Some Details About The Chemist Clouet and Two of His Namesakes.” Review of the History of Sciences and Their Applications , vol. 5, no. 4, 1952, p. 359–67. JSTOR , http://www.jstor.org/stable/23905084.
  7. 1 2 Wisniak, Jaime. "Louis Paul Cailletet—The liquefaction of the permanent gases." (2003).https://nopr.niscpr.res.in/bitstream/123456789/22723/1/IJCT%2010%282%29%20223-236.pdf
  8. 1803 – Thomas Moore
  9. Mendelssohn, Kurt. "Quest for absolute zero: the meaning of low temperature physics." (1977).
  10. 1844 – Charles Piazzi Smyth Archived 2012-02-10 at the Wayback Machine
  11. 1851 John Gorrie
  12. "Patent Images" . Retrieved 15 March 2015.
  13. JT Critchell & J. Raymond (Constable & Co., London: 1912), A History of the Frozen Meat Trade.
  14. "app-a1" . Retrieved 15 March 2015.
  15. Vacuum Science & Technology Timeline
  16. Zu, H.; Dai, W.; de Waele, A.T.A.M. (2022). "Development of Dilution refrigerators – A review". Cryogenics. 121. Bibcode:2022Cryo..121....1Z. doi:10.1016/j.cryogenics.2021.103390. ISSN   0011-2275. S2CID   244005391.
  17. "New State of Matter Seen Near Absolute Zero". NIST. Archived from the original on 2010-06-01.
  18. "World record in low temperatures". Archived from the original on 2009-06-18. Retrieved 2009-05-05.
  19. Knuuttila, Tauno (2000). Nuclear Magnetism and Superconductivity in Rhodium. Espoo, Finland: Helsinki University of Technology. ISBN   978-951-22-5208-4. Archived from the original on 2001-04-28. Retrieved 2008-02-11.
  20. "Low Temperature World Record" (Press release). Low Temperature Laboratory, Teknillinen Korkeakoulu. 8 December 2000. Archived from the original on 2008-02-18. Retrieved 2008-02-11.
  21. "CUORE: The Coldest Heart in the Known Universe". INFN Press Release. Retrieved 21 October 2014.
  22. "MIT team creates ultracold molecules". Massachusetts Institute of Technology, Massachusetts, Cambridge.
  23. Kovachy, Tim; Hogan, Jason M.; Sugarbaker, Alex; Dickerson, Susannah M.; Donnelly, Christine A.; Overstreet, Chris; Kasevich, Mark A. (2015). "Matter Wave Lensing to Picokelvin Temperatures". Physical Review Letters. 114 (14): 143004. arXiv: 1407.6995 . Bibcode:2015PhRvL.114n3004K. doi: 10.1103/PhysRevLett.114.143004 . PMID   25910118.
  24. "Coolest science ever headed to the space station". Science | AAAS. 2017-09-05. Retrieved 2017-09-24.
  25. "Cold Atom Laboratory Mission". Jet Propulsion Laboratory. NASA. 2017. Archived from the original on 2013-03-29. Retrieved 2016-12-22.
  26. "Cold Atom Laboratory Creates Atomic Dance". NASA News. 26 September 2014. Retrieved 2015-05-21.