Timeline of luminiferous aether

Last updated

The timeline of luminiferous aether (light-bearing aether) or ether as a medium for propagating electromagnetic radiation begins in the 18th century. The aether was assumed to exist for much of the 19th century—until the Michelson–Morley experiment returned its famous null result. Further experiments were in general agreement with Michelson and Morley's result. By the 1920s, most scientists rejected the aether's existence.

Contents

Timeline

Early experiments

4th-century BC – Aristotle publishes Physics , in which the aether is briefly described as being an element lighter than air that surrounds celestial bodies. He describes the aether in relation to other elements - aether is lighter than air and is located above it, whereas air is lighter than water, and water is lighter than earth. In Aristotle's view, each element returns to its proper place when displaced, which explains why air rises, why earth and water fall, and why the heavens remain in place. [1]
17th century: Robert Boyle was a proponent of an aether hypothesis. According to Boyle, the aether consists of subtle particles, one sort of which explains the absence of vacuum and the mechanical interactions between bodies, and the other sort of which explains phenomena such as magnetism (and possibly gravity) that are, otherwise, inexplicable on the basis of purely mechanical interactions of macroscopic bodies. [2]
1690 - Christiaan Huygens's Treatise on Light hypothesized that light is a wave propagating through an aether.
1704 – Isaac Newton publishes Opticks , in which he proposes a particle theory of light. This had trouble explaining diffraction, so he adds a "fudge factor," claiming that an "Aethereal Medium" is responsible for this effect, and going further to suggest it might be responsible for other physical effects such as heat.[ citation needed ]
1727 – James Bradley measures stellar aberration for the first time, proving (again) that light has a finite speed as well as that the Earth is moving.[ citation needed ]
1818 – Augustin Fresnel introduces the wave theory of light, which proposes light is a transverse wave travelling in an aether, thereby explaining how polarization can exist. It is important to note that both Newton's particle theory and Fresnel's wave theory both assume an aether exists, albeit for different reasons. From this point on, no one even seems to question its existence.[ citation needed ]
1820 – Discovery of Siméon Poisson's "Bright Spot", supporting the Wave Theory.[ citation needed ]
1830 – Fresnel develops a formula for predicting and measuring aether dragging by massive objects, based on a coupling constant. Such dragging seems to be at odds with aberration however, which would require the Earth not to drag the aether in order to be visible.
George Gabriel Stokes becomes a champion of the dragging theory.[ citation needed ]
1851 – Armand Fizeau carries out his famous experiment with light travelling through moving water. He measures fringing due to motion of the water, perfectly in line with Fresnel's formula. However he sees no effect due to the motion of the Earth, although he does not comment on this. Nevertheless this is seen as very strong evidence for aether dragging.[ citation needed ]
1868 – Martinus Hoek carries out an improved version of Fizeau's using an interferometer experiment with one arm in water. He sees no effect at all, and cannot offer an explanation as to why his experiment is so at odds with Fizeau's.[ citation needed ]
1871 – George Biddell Airy re-runs Bradley's experiment with a telescope filled with water. He too sees no effect. It appears that aether is not dragged by mass.[ citation needed ]
1873 – James Clerk Maxwell publishes his Treatise on Electricity and Magnetism .[ citation needed ]
1879 – Maxwell suggests absolute velocity of Earth in aether may be optically detectable.[ citation needed ]
1881 – Albert Abraham Michelson publishes his first interferometer experiments, using the device for the measurement of extremely small distances.[ citation needed ] To Michelson's dismay, his experiment finds no "ether drag" slowing light, as had been suggested by Fresnel.
Hendrik Antoon Lorentz finds Michelson's calculation have errors (i.e., doubling of the expected fringe shift error).
1882 – Michelson acknowledges his interpretation errors.[ citation needed ]

Crisis

1887 – the Michelson–Morley experiment (MMX) produces the famous null result. A small drift is seen, but it is too small to support any "fixed" aether theory, and is so small that it might be due to experimental error.
Many physicists dust off Stokes' work, and dragging becomes the "standard solution"
1887 to 1888 – Heinrich Hertz verifies the existence of electromagnetic waves.
1889 – George FitzGerald proposes the Contraction Hypothesis, which suggests that the measurements are null due to changes in the length in the direction of travel through the aether.
1892 – Oliver Lodge demonstrates that aether drag is invisible around rapidly moving celestial bodies.
1895 – Lorentz proposes independently the Contraction Hypothesis.
1902 to 1904 – Morley and Morley conduct a number of MM experiments with a 100 ft interferometer, producing the null result.
1902 to 1904 – Lord Rayleigh and DeWitt Bristol Brace found no signs of double refraction (due to FitzGerald–Lorentz Contraction) of moving bodies in the aether.
1903 – the Trouton–Noble experiment, based on an entirely different concept using electrical forces, also produces the null result
1905 – Miller and Morley's experiment data is published. Test of the Contraction Hypothesis has negative results. Test for aether dragging effects produces null result.
1908 – the Trouton–Rankine experiment, another experiment based on electrical effects, does not detect the FitzGerald–Lorentz Contraction.

Change

1904 – Hendrik Lorentz publishes a new theory of moving bodies, without discarding the stationary (electromagnetic) ether concept.
1905 – Henri Poincaré shows that Lorentz's theory fulfills the principle of relativity, and publishes the Lorentz transformations. His model was still based on Lorentz's ether, but he argues that this aether is perfectly undetectable.
1905 – Albert Einstein publishes an observationally equivalent theory, but complete with a derivation from principles alone (leaving the ether aside). Einstein also emphasized that this concept implies the relativity of space and time. He later labelled it special relativity.
1908 – Trouton–Rankine experiment shows that length contraction of an object according to one frame does not produce a measurable change of resistance in the object's rest frame
1913 – Georges Sagnac uses a rotating MMX device and receives a clearly positive result. The so-called Sagnac effect was considered excellent evidence for aether at the time, but was later explained via general relativity. Good explanations based on SR also exist.
1914 – Walther Zurhellen uses observations of binary stars to determine if the speed of light is dependent on movement of the source. His measurements show that it is not to 10−6. This is claimed to be additional evidence against aether dragging.
1915 – Einstein publishes on the general theory of relativity.
1919 – Arthur Eddington's Africa eclipse expedition is conducted and appears to confirm the general theory of relativity.
1920 – Einstein says that special relativity does not require rejecting the aether, and that the gravitational field of general relativity may be called aether, to which no state of motion can be attributed.
1921 – Dayton Miller conducts aether drift experiments at Mount Wilson. Miller performs tests with insulated and non-magnetic interferometers and obtains positive results.
1921 to 1924 – Miller conducts extensive tests under controlled conditions at Case University.
1924 – Miller repeats his experiments at Mount Wilson and yields a positive result.
Rudolf Tomaschek uses stars for his interferometer light source, getting the null result.
1925 – the Michelson–Gale–Pearson experiment produces a positive result while attempting to detect the effect of Earth's rotation on the velocity of light. The significance of the experiment remains debated to this day, but this planetary Sagnac effect is measured by ring laser gyros and taken into account by the GPS system.
1925 April – Meeting of the National Academy of Sciences.
Arthur Compton explains the problems with the Stokes aether drag solution.
Miller presents his positive results of the aether drag.
1925 December – American Association for the Advancement of Science meeting.
Miller proposes two theories to account for the positive result. One consists of a modified aether theory, the other a slight departure from the Contraction Hypothesis.
1926 – Roy J. Kennedy produces a null result on Mount Wilson
Auguste Piccard and Ernest Stahel produce a null result on Mont Rigi.
1927 – Mount Wilson conference.
Miller talks of partial entrainment
Michelson talks about aether drag and altitude differential effects
K. K. Illingworth produces a null result using a clever version of the MMX with a step in one mirror that dramatically improves resolution. The resolution is so good that most partial entrainment systems can be eliminated.
1929 – Michelson and F. G. Pease perform the Pearson experiment and produce a null result.
1930 – Georg Joos produces a null result using an extremely accurate interferometer placed entirely in vacuum.
1932 – the Kennedy–Thorndike experiment uses an interferometer with arms of different lengths and not at right angles. They measure over several seasons and record on photographs to allow better post-measurement study. The Kennedy Thorndike experiment becomes one of the fundamental tests for SR, proving the independence of light speed wrt to the speed of the emitting source. The other two fundamental tests are Michelson–Morley experiment (proves light speed isotropy) and Ives–Stilwell experiment (proves time dilation)
1934 – Georg Joos publishes on the Michelson–Gale–Pearson experiment, stating that it is improbable that aether would be entrained by translational motion and not by rotational motion.
1935 – Hammar experiment disproves aether entrainment
1951 – Paul Dirac writes that currently-accepted quantum field theory requires an aether, although he never formulated this theory completely.

Debate slows

1955 – R. S. Shankland, S. W. McCuskey, F. C. Leone, and G. Kuerti performed an analysis of Miller's results and explained them as stemming from systematic errors (Shankland's explanation is now widely accepted).
1958 – Cedarholm, Havens, and Townes use two masers frequency locked to each other and send the light in two directions. They receive the null result. The experiment is not as precise as earlier light-based MMX experiments, but demonstrates a novel setup that would become much more accurate in the future.
1964 – Jaseja, Javan, Murray and Townes repeat the earlier experiment with newer and much more precise masers.
1969 – Shamir and Fox repeat the MMX experiment with the "arms" in acrylic glass waveguides and a highly stable laser as the source. The experiment should detect a shift as small as ~0.00003 of a fringe, and none is measured.
1972 – R. S. Shankland admits he would not likely have given the effort to question Dayton Miller's work had it not been for Albert Einstein's "interest and encouragement."
1973 – Trimmer finds a null result in a triangular interferometer with one leg in glass.
1977 – Brecher repeats Zurhellen's experiment with binary pulsars, showing no difference in light speed to 2*10−9
1979 Brillet and Hall use the Townes setup with highly accurate lasers, demonstrating no drift to 3 parts in 1015. The experiment also demonstrates a leftover 17 Hz signal, but the authors assume it is linked to the laboratory.
1984 – Torr and Kolen find a cyclic phase shift between two atomic clocks, but the distance between is relatively short (0.5 km) and they are clocks of the less-precise rubidium type
1988 – Gagnon et al. measure one way light speed and detect no anisotropy
1990 – Hils and Hall repeat the Kennedy–Thorndike experiment with lasers, taking measurements over the period of a year. They find no shifting in 2 10−13
Krisher et al., Phys. Rev. D, 42, No. 2, pp. 731–734, (1990) use two hydrogen masers fixed to the earth and separated by a 21 km fiber-optic link to look for variations in the phase between them. They put an upper limit on the one-way linear anisotropy of 100 m/s.
1991 – Over a six-month period, Roland DeWitte finds, over a 1.5 km underground coaxial cable, a cyclic component in the phase drift between higher-precision caesium-beam clocks on more-or-less the same meridian; the period equals the sidereal day
2003 – Holger Mueller and Achim Peters carry out a Modern Michelson–Morley Experiment using Cryogenic Optical Resonators at Humboldt University, Berlin. They find no shifting in 10−15

Further reading

Classical references

See also

Related Research Articles

<span class="mw-page-title-main">Luminiferous aether</span> Obsolete postulated medium for the propagation of light

Luminiferous aether or ether was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space, something that waves should not be able to do. The assumption of a spatial plenum of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light.

<span class="mw-page-title-main">Theory of relativity</span> Two interrelated physics theories by Albert Einstein

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein; special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

<span class="mw-page-title-main">Michelson–Morley experiment</span> 1887 experiment that failed to detect a supposed medium carrying light waves

The Michelson–Morley experiment was an attempt to detect the existence of the luminiferous aether, a supposed medium permeating space that was thought to be the carrier of light waves. The experiment was performed between April and July 1887 by American physicists Albert A. Michelson and Edward W. Morley at what is now Case Western Reserve University in Cleveland, Ohio, and published in November of the same year.

<span class="mw-page-title-main">Dayton Miller</span>

Dayton Clarence Miller was an American physicist, astronomer, acoustician, and accomplished amateur flautist. An early experimenter of X-rays, Miller was an advocate of aether theory and absolute space and an opponent of Albert Einstein's theory of relativity.

<span class="mw-page-title-main">Kennedy–Thorndike experiment</span>

The Kennedy–Thorndike experiment, first conducted in 1932 by Roy J. Kennedy and Edward M. Thorndike, is a modified form of the Michelson–Morley experimental procedure, testing special relativity. The modification is to make one arm of the classical Michelson–Morley (MM) apparatus shorter than the other one. While the Michelson–Morley experiment showed that the speed of light is independent of the orientation of the apparatus, the Kennedy–Thorndike experiment showed that it is also independent of the velocity of the apparatus in different inertial frames. It also served as a test to indirectly verify time dilation – while the negative result of the Michelson–Morley experiment can be explained by length contraction alone, the negative result of the Kennedy–Thorndike experiment requires time dilation in addition to length contraction to explain why no phase shifts will be detected while the Earth moves around the Sun. The first direct confirmation of time dilation was achieved by the Ives–Stilwell experiment. Combining the results of those three experiments, the complete Lorentz transformation can be derived.

Emission theory, also called emitter theory or ballistic theory of light, was a competing theory for the special theory of relativity, explaining the results of the Michelson–Morley experiment of 1887. Emission theories obey the principle of relativity by having no preferred frame for light transmission, but say that light is emitted at speed "c" relative to its source instead of applying the invariance postulate. Thus, emitter theory combines electrodynamics and mechanics with a simple Newtonian theory. Although there are still proponents of this theory outside the scientific mainstream, this theory is considered to be conclusively discredited by most scientists.

Special relativity is a physical theory that plays a fundamental role in the description of all physical phenomena, as long as gravitation is not significant. Many experiments played an important role in its development and justification. The strength of the theory lies in its unique ability to correctly predict to high precision the outcome of an extremely diverse range of experiments. Repeats of many of those experiments are still being conducted with steadily increased precision, with modern experiments focusing on effects such as at the Planck scale and in the neutrino sector. Their results are consistent with the predictions of special relativity. Collections of various tests were given by Jakob Laub, Zhang, Mattingly, Clifford Will, and Roberts/Schleif.

In the 19th century, the theory of the luminiferous aether as the hypothetical medium for the propagation of light waves was widely discussed. The aether hypothesis arose because physicists of that era could not conceive of light waves propagating without a physical medium in which to do so. When experiments failed to detect the hypothesized luminiferous aether, physicists conceived explanations, which preserved the hypothetical aether's existence, for the experiments' failure to detect it.

The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.

In physics, aether theories propose the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models.

What is now often called Lorentz ether theory (LET) has its roots in Hendrik Lorentz's "theory of electrons", which was the final point in the development of the classical aether theories at the end of the 19th and at the beginning of the 20th century.

The Michelson–Gale–Pearson experiment (1925) is a modified version of the Michelson–Morley experiment and the Sagnac-Interferometer. It measured the Sagnac effect due to Earth's rotation, and thus tests the theories of special relativity and luminiferous ether along the rotating frame of Earth.

In theoretical physics, a preferred frame or privileged frame is usually a special hypothetical frame of reference in which the laws of physics might appear to be identifiably different (simpler) from those in other frames.

The Hammar experiment was an experiment designed and conducted by Gustaf Wilhelm Hammar (1935) to test the aether drag hypothesis. Its negative result refuted some specific aether drag models, and confirmed special relativity.

The Trouton–Rankine experiment was an experiment designed to measure if the Lorentz–FitzGerald contraction of an object according to one frame produced a measurable effect in the rest frame of the object, so that the ether would act as a "preferred frame". The experiment was first performed by Frederick Thomas Trouton and Alexander Oliver Rankine in 1908.

<span class="mw-page-title-main">Fringe shift</span>

In interferometry experiments such as the Michelson–Morley experiment, a fringe shift is the behavior of a pattern of “fringes” when the phase relationship between the component sources change.

<span class="mw-page-title-main">Fizeau experiment</span> Experiment measuring the speed of light in moving water

The Fizeau experiment was carried out by Hippolyte Fizeau in 1851 to measure the relative speeds of light in moving water. Fizeau used a special interferometer arrangement to measure the effect of movement of a medium upon the speed of light.

The experiments of Rayleigh and Brace were aimed to show whether length contraction leads to birefringence or not. They were some of the first optical experiments measuring the relative motion of Earth and the luminiferous aether which were sufficiently precise to detect magnitudes of second order to v/c. The results were negative, which was of great importance for the development of the Lorentz transformation and consequently of the theory of relativity. See also Tests of special relativity.

Criticism of the theory of relativity of Albert Einstein was mainly expressed in the early years after its publication in the early twentieth century, on scientific, pseudoscientific, philosophical, or ideological bases. Though some of these criticisms had the support of reputable scientists, Einstein's theory of relativity is now accepted by the scientific community.

<span class="mw-page-title-main">Timeline of special relativity and the speed of light</span>

This timeline describes the major developments, both experimental and theoretical, of:

References

  1. "Physics by Aristotle" Translated by R. P. Hardie and R. K. Gaye. The Internet Classics Archive
  2. Robert Boyle, The Works of the Honourable Robert Boyle, ed. Thomas Birch, 2nd edn., 6 vols. (London, 1772), III, 316; quoted in E. A. Burtt, The Metaphysical Foundations of Modern Science (Garden City, New York: Doubleday & Company, 1954), 191-192.