Timeline of solar cells

Last updated

In the 19th century, it was observed that the sunlight striking certain materials generates detectable electric current – the photoelectric effect. This discovery laid the foundation for solar cells. Solar cells have gone on to be used in many applications. They have historically been used in situations where electrical power from the grid was unavailable.

Contents

As the invention was brought out it made solar cells as a prominent utilization for power generation for satellites. Satellites orbit the Earth, thus making solar cells a prominent source for power generation through the sunlight falling on them. Solar cells are commonly used in satellites in today's times.

1800s

Edmond Becquerel created the world's first photovoltaic cell at 19 years old in 1839. Edmond Becquerel, by Nadar, 2 (cropped).jpg
Edmond Becquerel created the world's first photovoltaic cell at 19 years old in 1839.

1900–1929

Einstein's "On a Heuristic Viewpoint Concerning the Production and Transformation of Light" was published in Annalen der Physik in 1905. Einstein 4.jpg
Einstein's "On a Heuristic Viewpoint Concerning the Production and Transformation of Light" was published in Annalen der Physik in 1905.

1930–1959

Vanguard 1 with its six solar cells attached Vanguard 1.jpg
Vanguard 1 with its six solar cells attached

1960–1979

A New Mexico State University professor showing a solar panel in New Mexico in April 1974 DR. R.L. SAN MARTIN, NEW MEXICO STATE UNIVERSITY CLOSED COIL TYPE SOLAR HEATING PANEL - 555293 (cropped).jpg
A New Mexico State University professor showing a solar panel in New Mexico in April 1974

1980–1999

National Renewable Energy Laboratory logo National Renewable Energy Laboratory logo (2 rows).jpg
National Renewable Energy Laboratory logo

2000–2019

Exponential growth-curve on a semi-log scale of worldwide installed photovoltaics in gigawatts since 1992 PV cume semi log chart 2014 estimate.svg
Exponential growth-curve on a semi-log scale of worldwide installed photovoltaics in gigawatts since 1992
Solar cell production by region 2000-2010 SolarCellProduction-E.PNG
Solar cell production by region 2000–2010
Market share of the different PV technologies 1999-2010 PV Technology Share.png
Market share of the different PV technologies 1999–2010
Worldwide installed photovoltaic capacity in "watts per capita" by country. Estimated figures for year 2016. Worldwide Photovoltaic Deployment in Watts per Capita by Country.svg
Worldwide installed photovoltaic capacity in "watts per capita" by country. Estimated figures for year 2016.
Reported timeline of research solar cell energy conversion efficiencies since 1976 (National Renewable Energy Laboratory) NREL PV Cell Record Efficiency Chart.png
Reported timeline of research solar cell energy conversion efficiencies since 1976 (National Renewable Energy Laboratory)

2020s

2020

2021

2022

See also

Related Research Articles

<span class="mw-page-title-main">Photovoltaics</span> Method to produce electricity from solar radiation

Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially used for electricity generation and as photosensors.

<span class="mw-page-title-main">National Renewable Energy Laboratory</span> United States national laboratory

The National Renewable Energy Laboratory (NREL) in the US specializes in the research and development of renewable energy, energy efficiency, energy systems integration, and sustainable transportation. NREL is a federally funded research and development center sponsored by the Department of Energy and operated by the Alliance for Sustainable Energy, a joint venture between MRIGlobal and Battelle. Located in Golden, Colorado, NREL is home to the National Center for Photovoltaics, the National Bioenergy Center, and the National Wind Technology Center.

The photovoltaic effect is the generation of voltage and electric current in a material upon exposure to light. It is a physical and chemical phenomenon.

<span class="mw-page-title-main">Solar cell</span> Photodiode used to produce power from light on a large scale

A solar cell or photovoltaic cell is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. It is a form of photoelectric cell, a device whose electrical characteristics vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as "solar panels". The common single-junction silicon solar cell can produce a maximum open-circuit voltage of approximately 0.5 to 0.6 volts.

Charles Fritts was the American inventor credited with creating the first working selenium cell in 1883.

<span class="mw-page-title-main">Solar panel</span> Assembly of photovoltaic cells used to generate electricity

A solar panel is a device that converts sunlight into electricity by using photovoltaic (PV) cells. PV cells are made of materials that generate electrons when exposed to light. The electrons flow through a circuit and produce direct current (DC) electricity, which can be used to power various devices or be stored in batteries. Solar panels are also known as solar cell panels, solar electric panels, or PV modules.

Nanosolar was a developer of solar power technology. Based in San Jose, CA, Nanosolar developed and briefly commercialized a low-cost printable solar cell manufacturing process. The company started selling thin-film CIGS panels mid-December 2007, and planned to sell them at 99 cents per watt, much below the market at the time. However, prices for solar panels made of crystalline silicon declined significantly during the following years, reducing most of Nanosolar's cost advantage. By February 2013 Nanosolar had laid off 75% of its work force. Nanosolar began auctioning off its equipment in August 2013. Co-Founder of Nanosolar Martin Roscheisen stated on his personal blog that nanosolar "ultimately failed commercially." and that he would not enter this industry again because of slow-development cycle, complex production problems and the impact of cheap Chinese solar power production. Nanosolar ultimately produced less than 50 MW of solar power capacity despite having raised more than $400 million in investment.

<span class="mw-page-title-main">Building-integrated photovoltaics</span> Photovoltaic materials used to replace conventional building materials

Building-integrated photovoltaics (BIPV) are photovoltaic materials that are used to replace conventional building materials in parts of the building envelope such as the roof, skylights, or façades. They are increasingly being incorporated into the construction of new buildings as a principal or ancillary source of electrical power, although existing buildings may be retrofitted with similar technology. The advantage of integrated photovoltaics over more common non-integrated systems is that the initial cost can be offset by reducing the amount spent on building materials and labor that would normally be used to construct the part of the building that the BIPV modules replace. In addition, BIPV allows for more widespread solar adoption when the building's aesthetics matter and traditional rack-mounted solar panels would disrupt the intended look of the building.

<span class="mw-page-title-main">First Solar</span> American solar power company

First Solar, Inc. is an American manufacturer of solar panels, and a provider of utility-scale PV power plants and supporting services that include finance, construction, maintenance and end-of-life panel recycling. First Solar uses rigid thin-film modules for its solar panels, and produces CdTe panels using cadmium telluride (CdTe) as a semiconductor. The company was founded in 1990 by inventor Harold McMaster as Solar Cells, Inc. and the Florida Corporation in 1993 with JD Polk. In 1999 it was purchased by True North Partners, LLC, who rebranded it as First Solar, Inc.

<span class="mw-page-title-main">Solar power</span> Conversion of energy from sunlight into electricity

Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV) or indirectly using concentrated solar power. Photovoltaic cells convert light into an electric current using the photovoltaic effect. Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight to a hot spot, often to drive a steam turbine.

A photovoltaic system, also PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to convert the output from direct to alternating current, as well as mounting, cabling, and other electrical accessories to set up a working system. It may also use a solar tracking system to improve the system's overall performance and include an integrated battery.

<span class="mw-page-title-main">Cadmium telluride photovoltaics</span> Type of solar power cell

Cadmium telluride (CdTe) photovoltaics is a photovoltaic (PV) technology based on the use of cadmium telluride in a thin semiconductor layer designed to absorb and convert sunlight into electricity. Cadmium telluride PV is the only thin film technology with lower costs than conventional solar cells made of crystalline silicon in multi-kilowatt systems.

<span class="mw-page-title-main">Thin-film solar cell</span> Type of second-generation solar cell

Thin-film solar cells are made by depositing one or more thin layers of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (µm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 µm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon.

<span class="mw-page-title-main">Copper indium gallium selenide solar cell</span>

A copper indium gallium selenide solar cell is a thin-film solar cell used to convert sunlight into electric power. It is manufactured by depositing a thin layer of copper indium gallium selenide solid solution on glass or plastic backing, along with electrodes on the front and back to collect current. Because the material has a high absorption coefficient and strongly absorbs sunlight, a much thinner film is required than of other semiconductor materials.

<span class="mw-page-title-main">Concentrator photovoltaics</span> Use of mirror or lens assemblies to generate current from multi-junction solar cells

Concentrator photovoltaics (CPV) is a photovoltaic technology that generates electricity from sunlight. Unlike conventional photovoltaic systems, it uses lenses or curved mirrors to focus sunlight onto small, highly efficient, multi-junction (MJ) solar cells. In addition, CPV systems often use solar trackers and sometimes a cooling system to further increase their efficiency.

<span class="mw-page-title-main">Solar cell research</span> Research in the field of photovoltaics

There are currently many research groups active in the field of photovoltaics in universities and research institutions around the world. This research can be categorized into three areas: making current technology solar cells cheaper and/or more efficient to effectively compete with other energy sources; developing new technologies based on new solar cell architectural designs; and developing new materials to serve as more efficient energy converters from light energy into electric current or light absorbers and charge carriers.

<span class="mw-page-title-main">Solar-cell efficiency</span> Ratio of energy extracted from sunlight in solar cells

Solar-cell efficiency refers to the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell.

Amonix, Inc. is a solar power system developer based in Seal Beach, California. The company manufactures concentrator photovoltaic (CPV) products designed for installation in sunny and dry climates. CPV products convert sunlight into electrical energy in the same way that conventional solar photovoltaic technology does, except that they use optics to focus the solar radiation before the light is absorbed by solar cells. According to a comparative study of energy production of solar technologies, CPV systems require no water for energy production and produce more energy per megawatt (MW) installed than traditional PV systems. Amonix has nearly 70 megawatts of CPV solar power systems deployed globally, including Southwestern U.S. and Spain. In May 2012, the Alamosa Solar Generating project, owned and operated by Cogentrix Energy, began commercial operation. This is the largest CPV power plant in the world and is expected to produce enough clean renewable energy per year to power more than 6,500 homes and will avoid the emissions of over 43,000 metric tons of carbon dioxide per year. The Alamosa Solar Generating Project is supported by a power purchase agreement (PPA), which is a long-term agreement to sell the power it will generate. Under the project's PPA, the Public Service Company of Colorado will buy the power generated by the solar facility for the next 20 years. In July 2012, Amonix set the world record for photovoltaic module efficiency at 33.5% under nominal operating conditions, verified by the National Renewable Energy Laboratory. In April 2013, Amonix broke the record set in July 2012, demonstrating photovoltaic module efficiency at 34.9% under normal concentrator standard operating conditions, also verified by the National Renewable Energy Laboratory. In August 2013, Amonix announced it had achieved a 35.9% photovoltaic module efficiency rating under concentrator standard test conditions (CSTC) as calculated by NREL. In June, 2014, the assets of Amonix were acquired by Arzon Solar, LLC for the purpose of continued development of CPV technology and products.

There are many practical applications for solar panels or photovoltaics. From the fields of the agricultural industry as a power source for irrigation to its usage in remote health care facilities to refrigerate medical supplies. Other applications include power generation at various scales and attempts to integrate them into homes and public infrastructure. PV modules are used in photovoltaic systems and include a large variety of electrical devices.

<span class="mw-page-title-main">Emily Warren (scientist)</span> American physicist

Emily Warren is an American chemical engineer who is a staff scientist at the National Renewable Energy Laboratory. Her research considers high efficiency crystalline photovoltaics.

References

  1. "Recreating Edmond Becquerel's electrochemical actinometer" (PDF). Archived from the original (PDF) on 7 May 2020. Retrieved 7 May 2020.
  2. Becquerel, Alexandre Edmond (1839). "Recherche sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques". Comptes rendus hebdomadaires des séances de l'Académie des sciences. 9: 145–149. Retrieved 7 May 2020.
  3. Smith, Willoughby (20 February 1873). "Effect of Light on Selenium During the Passage of An Electric Current". Nature. 7 (173): 303. Bibcode:1873Natur...7R.303.. doi: 10.1038/007303e0 .
  4. Maxwell, James Clerk (April 1874). The Scientific Letters and Papers of James Clerk Maxwell: Volume 3, 1874-1879. Cambridge, UK: P. M. Harman. p. 67. ISBN   978-0-521-25627-8. Archived from the original on 27 October 2021. Retrieved 7 May 2020.
  5. "Photovoltaic Dreaming 1875–1905: First Attempts At Commercializing PV". 31 December 2014. Archived from the original on 25 May 2017. Retrieved 8 April 2017.
  6. Issue date: May 7, 1935. Archived 2021-10-27 at the Wayback Machine
  7. David C. Brock (Spring 2006). "Useless No More: Gordon K. Teal, Germanium, and Single-Crystal Transistors". Chemical Heritage Magazine. Chemical Heritage Foundation. 24 (1). Archived from the original on June 15, 2010. Retrieved 2008-01-21.
  8. "April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar Cell". APS News. American Physical Society. 18 (4). April 2009. Archived from the original on January 28, 2018. Retrieved May 15, 2014.
  9. D. M. Chapin; C. S. Fuller & G. L. Pearson (May 1954). "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power". Journal of Applied Physics. 25 (5): 676–677. Bibcode:1954JAP....25..676C. doi:10.1063/1.1721711.
  10. Black, Lachlan E. (2016). New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface (PDF). Springer. p. 13. ISBN   978-3-319-32521-7. Archived (PDF) from the original on 2021-03-04. Retrieved 2019-10-05.
  11. Lojek, Bo (2007). History of Semiconductor Engineering . Springer Science & Business Media. pp.  120& 321-323. ISBN   978-3-540-34258-8.
  12. Black, Lachlan E. (2016). New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface (PDF). Springer. ISBN   978-3-319-32521-7. Archived (PDF) from the original on 2021-03-04. Retrieved 2019-10-05.
  13. "Solar watches". Archived from the original on 1 April 2017. Retrieved 8 April 2017.
  14. Alferov, Zh. I., V. M. Andreev, M. B. Kagan, I. I. Protasov, and V. G. Trofim, 1970, Solar-energy converters based on p-n AlxGa12xAs-GaAs heterojunctions, Fiz. Tekh. Poluprovodn. 4, 2378 (Sov. Phys. Semicond. 4, 2047 (1971))]
  15. Nanotechnology in energy applications Archived 2009-02-25 at the Wayback Machine , pdf, p.24
  16. Nobel Lecture Archived 2007-09-26 at the Wayback Machine by Zhores Alferov, pdf, p.6
  17. "Florida Solar Energy Center". Archived from the original on 20 November 2008. Retrieved 8 April 2017.
  18. "Calculator Time-line". Archived from the original on 17 July 2011. Retrieved 8 April 2017.
  19. "Geschichte - Fraunhofer ISE".
  20. Eguren, Javier; Martínez-Moreno, Francisco; Merodio, Pablo; Lorenzo, Eduardo (2022). "First bifacial PV modules early 1983". Solar Energy . 243: 327–335. Bibcode:2022SoEn..243..327E. doi:10.1016/j.solener.2022.08.002. ISSN   0038-092X. S2CID   251552073.
  21. Catalano, A.; D'Aiello, R. V.; Dresner, J.; Faughnan, B.; Firester, A.; Kane, J.; Schade, H.; Smith, Z. E.; Schwartz, G.; Triano, A. (1982). "Attainment of 10% Conversion Efficiency in Amorphous Silicon Solar Cells". Proceedings of the 16th IEEE Photovoltaic Specialists Conference, San Diego, California: 1421.
  22. Switching To Solar, Bob Johnstone, 2011, Prometheus Books
  23. Pv News November 2012 Archived 2015-09-24 at the Wayback Machine . Greentech Media. Retrieved 3 June 2012.
  24. "White House installs solar-electric system - 1/22/2003 - ENN.com". 29 February 2004. Archived from the original on 29 February 2004. Retrieved 8 April 2017.
  25. Simone Pulver, Barry G. Rabe, Peter J. Stoett, Changing Climates in North American Politics: Institutions, Policymaking, and Multilevel Governance, MIT Press, 2009, ISBN   0262012995 p. 67
  26. "California Solar Initiative". Archived from the original on 2008-09-07. Retrieved 2007-07-12.
  27. "New World Record Achieved in Solar Cell Technology" (Press release). United States Department of Energy. December 5, 2006. Archived from the original on 2020-10-30. Retrieved 2020-11-30.
  28. Krauss, Leah (May 31, 2007). "Solar World: Vatican installs solar panels". United Press International. Archived from the original on April 13, 2008. Retrieved 2008-01-16.
  29. "From 40.7 to 42.8 % Solar Cell Efficiency". July 30, 2007. Archived from the original on 2007-10-18. Retrieved 2008-01-16.
  30. "Nanosolar Ships First Panels". Nanosolar Blog. Archived from the original on 2008-01-16. Retrieved 2008-01-22.
  31. "Nanosolar - Products". Nanosolar.com. Archived from the original on 2009-05-05. Retrieved 2008-01-22.
  32. NREL Public Relations (2008-08-13). "NREL Solar Cell Sets World Efficiency Record at 40.8 Percent". National Renewable Energy Laboratory. Archived from the original on 2008-09-17. Retrieved 2008-09-29.
  33. Stephen Clark (20 May 2010). "H-2A Launch Report – Mission Status Center". Spaceflight Now. Archived from the original on 20 May 2010. Retrieved 21 May 2010.
  34. "Launch Day of the H-IIA Launch Vehicle No. 17(H-IIA F17)". JAXA. 3 March 2010. Archived from the original on 3 June 2013. Retrieved 7 May 2010.
  35. Juliet Eilperin (October 6, 2010). "White House goes solar". Washington Post . Archived from the original on October 7, 2012. Retrieved October 5, 2010.
  36. Mike Koshmrl & Seth Masia (Nov–Dec 2010). "Solyndra and the shakeout: the recent solar bankruptcies in context". Solar Today. Archived from the original on 2011-11-20. Retrieved 2011-11-29.
  37. "White House solar panels being installed this week". The Washington Post. Archived from the original on 2015-07-01. Retrieved 2017-09-16.
  38. "ARENA supports another solar world record". Australian Government - Australian Renewable Energy Agency. 18 May 2016. Archived from the original on 22 June 2016. Retrieved 14 June 2016.
  39. Martin, Richard. "Why the future of solar may not be silicon-based". Archived from the original on 27 February 2017. Retrieved 8 April 2017.
  40. "Kenning T. Alta Devices sets GaAs solar cell efficiency record at 29.1%, joins NASA space station testing. PV-Tech. December 13, 2018 5:13 AM GMT". 13 December 2018. Archived from the original on December 13, 2018. Retrieved January 12, 2019.
  41. "Alta sets flexible solar record with 29.1% GaAs cell". optics.org. Archived from the original on 2021-03-06. Retrieved 2021-10-27.
  42. Clercq, Geert De (2018-06-25). "Europe's first solar panel recycling plant opens in France". Reuters. Archived from the original on 2021-06-26. Retrieved 26 June 2021.
  43. Geisz, J. F.; Steiner, M. A.; Jain, N.; Schulte, K. L.; France, R. M.; McMahon, W. E.; Perl, E. E.; Friedman, D. J. (March 2018). "Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell". IEEE Journal of Photovoltaics. 8 (2): 626–632. doi: 10.1109/JPHOTOV.2017.2778567 . ISSN   2156-3403. OSTI   1417798.
  44. "A new solar technology could be the next big boost for renewable energy". 26 December 2018. Archived from the original on 2018-12-27. Retrieved 2020-11-30.
  45. "New solar cells extract more energy from sunshine". The Economist. Archived from the original on 2020-11-30. Retrieved 2020-11-30.
  46. Geisz, John F.; France, Ryan M.; Schulte, Kevin L.; Steiner, Myles A.; Norman, Andrew G.; Guthrey, Harvey L.; Young, Matthew R.; Song, Tao; Moriarty, Thomas (April 2020). "Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration". Nature Energy. 5 (4): 326–335. Bibcode:2020NatEn...5..326G. doi:10.1038/s41560-020-0598-5. ISSN   2058-7546. OSTI   1659948. S2CID   216289881. Archived from the original on 7 August 2020. Retrieved 16 September 2020.
  47. Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo; Miyasaka, Tsutomu (May 6, 2009). "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells". Journal of the American Chemical Society. 131 (17): 6050–6051. doi:10.1021/ja809598r. PMID   19366264.
  48. 1 2 "NREL efficiency chart" (PDF). Archived (PDF) from the original on 2020-11-28. Retrieved 2020-11-30.
  49. "Light to electricity: New multi-material solar cells set new efficiency standard". phys.org. Archived from the original on 28 March 2020. Retrieved 5 April 2020.
  50. Xu, Jixian; Boyd, Caleb C.; Yu, Zhengshan J.; Palmstrom, Axel F.; Witter, Daniel J.; Larson, Bryon W.; France, Ryan M.; Werner, Jérémie; Harvey, Steven P.; Wolf, Eli J.; Weigand, William; Manzoor, Salman; Hest, Maikel F. A. M. van; Berry, Joseph J.; Luther, Joseph M.; Holman, Zachary C.; McGehee, Michael D. (6 March 2020). "Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems". Science. 367 (6482): 1097–1104. Bibcode:2020Sci...367.1097X. doi:10.1126/science.aaz5074. PMID   32139537. S2CID   212561010.
  51. "Research points to strategies for recycling of solar panels". techxplore.com. Archived from the original on 2021-06-26. Retrieved 2021-06-26.
  52. Heath, Garvin A.; Silverman, Timothy J.; Kempe, Michael; Deceglie, Michael; Ravikumar, Dwarakanath; Remo, Timothy; Cui, Hao; Sinha, Parikhit; Libby, Cara; Shaw, Stephanie; Komoto, Keiichi; Wambach, Karsten; Butler, Evelyn; Barnes, Teresa; Wade, Andreas (July 2020). "Research and development priorities for silicon photovoltaic module recycling to support a circular economy". Nature Energy. 5 (7): 502–510. Bibcode:2020NatEn...5..502H. doi:10.1038/s41560-020-0645-2. ISSN   2058-7546. S2CID   220505135. Archived from the original on 21 August 2021. Retrieved 26 June 2021.
  53. "Crystal structure discovered almost 200 years ago could hold key to solar cell revolution". phys.org. Archived from the original on 2020-07-04. Retrieved 2020-07-04.
  54. Lin, Yen-Hung; Sakai, Nobuya; Da, Peimei; Wu, Jiaying; Sansom, Harry C.; Ramadan, Alexandra J.; Mahesh, Suhas; Liu, Junliang; Oliver, Robert D. J.; Lim, Jongchul; Aspitarte, Lee; Sharma, Kshama; Madhu, P. K.; Morales‐Vilches, Anna B.; Nayak, Pabitra K.; Bai, Sai; Gao, Feng; Grovenor, Chris R. M.; Johnston, Michael B.; Labram, John G.; Durrant, James R.; Ball, James M.; Wenger, Bernard; Stannowski, Bernd; Snaith, Henry J. (2 July 2020). "A piperidinium salt stabilizes efficient metal-halide perovskite solar cells" (PDF). Science. 369 (6499): 96–102. Bibcode:2020Sci...369...96L. doi:10.1126/science.aba1628. hdl:10044/1/82840. PMID   32631893. S2CID   220304363. Archived (PDF) from the original on 13 September 2020. Retrieved 30 November 2020.
  55. "Both-sides-contacted solar cell sets new world record of 26 percent efficiency". techxplore.com. Archived from the original on 10 May 2021. Retrieved 10 May 2021.
  56. Richter, Armin; Müller, Ralph; Benick, Jan; Feldmann, Frank; Steinhauser, Bernd; Reichel, Christian; Fell, Andreas; Bivour, Martin; Hermle, Martin; Glunz, Stefan W. (April 2021). "Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses". Nature Energy. 6 (4): 429–438. Bibcode:2021NatEn...6..429R. doi:10.1038/s41560-021-00805-w. ISSN   2058-7546. S2CID   234847037. Archived from the original on 27 October 2021. Retrieved 10 May 2021.
  57. ""Molecular glue" strengthens the weak point in perovskite solar cells". New Atlas. 2021-05-10. Archived from the original on 2021-06-13. Retrieved 13 June 2021.
  58. Dai, Zhenghong; Yadavalli, Srinivas K.; Chen, Min; Abbaspourtamijani, Ali; Qi, Yue; Padture, Nitin P. (2021-05-07). "Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability". Science. 372 (6542): 618–622. Bibcode:2021Sci...372..618D. doi:10.1126/science.abf5602. ISSN   0036-8075. PMID   33958474. S2CID   233872843. Archived from the original on 2021-06-13. Retrieved 13 June 2021.
  59. "Polish firm opens cutting-edge solar energy plant". techxplore.com. Archived from the original on 24 June 2021. Retrieved 23 June 2021.
  60. "The Wikipedia of perovskite solar cell research". Helmholtz Association of German Research Centres. Retrieved 19 January 2022.
  61. T. Jesper Jacobsson; Adam Hultqvist; Alberto García-Fernández; et al. (13 December 2021). "An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles". Nature Energy. 7: 107–115. doi:10.1038/s41560-021-00941-3. hdl: 10356/163386 . ISSN   2058-7546. S2CID   245175279.
  62. "Solar glass: - ML System opens Quantum Glass production line - pv Europe". 13 December 2021.
  63. "Fraunhofer ISE entwickelt effizienteste Solarzelle der Welt mit 47,6 Prozent Wirkungsgrad - Fraunhofer ISE".
  64. Huang, Xinjing; Fan, Dejiu; Li, Yongxi; Forrest, Stephen R. (20 July 2022). "Multilevel peel-off patterning of a prototype semitransparent organic photovoltaic module". Joule. 6 (7): 1581–1589. doi: 10.1016/j.joule.2022.06.015 . ISSN   2542-4785. S2CID   250541919.
  65. "Transparent solar panels for windows hit record 8% efficiency". University of Michigan News. 17 August 2020. Retrieved 23 August 2022.
  66. Li, Yongxi; Guo, Xia; Peng, Zhengxing; Qu, Boning; Yan, Hongping; Ade, Harald; Zhang, Maojie; Forrest, Stephen R. (September 2020). "Color-neutral, semitransparent organic photovoltaics for power window applications". Proceedings of the National Academy of Sciences. 117 (35): 21147–21154. Bibcode:2020PNAS..11721147L. doi: 10.1073/pnas.2007799117 . ISSN   0027-8424. PMC   7474591 . PMID   32817532.
  67. "Researchers fabricate highly transparent solar cell with 2D atomic sheet". Tohoku University . Retrieved 23 August 2022.
  68. He, Xing; Iwamoto, Yuta; Kaneko, Toshiro; Kato, Toshiaki (4 July 2022). "Fabrication of near-invisible solar cell with monolayer WS2". Scientific Reports. 12 (1): 11315. Bibcode:2022NatSR..1211315H. doi: 10.1038/s41598-022-15352-x . ISSN   2045-2322. PMC   9253307 . PMID   35787666.
  69. Wells, Sarah. "Hair-thin solar cells could turn any surface into a power source". Inverse. Retrieved 18 January 2023.
  70. Saravanapavanantham, Mayuran; Mwaura, Jeremiah; Bulović, Vladimir (January 2023). "Printed Organic Photovoltaic Modules on Transferable Ultra‐thin Substrates as Additive Power Sources". Small Methods. 7 (1): 2200940. doi: 10.1002/smtd.202200940 . ISSN   2366-9608. PMID   36482828. S2CID   254524625.
  71. "Tandem solar cell achieves 32.5 percent efficiency". Science Daily. 19 December 2022. Retrieved 21 December 2022.