Tin(II) sulfide

Last updated
Tin(II) sulfide [1]
IUPAC name
Tin(II) sulfide
Other names
Tin monosulfide
3D model (JSmol)
ECHA InfoCard 100.013.863 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 215-248-7
PubChem CID
  • InChI=1S/S.Sn
  • S=[Sn]
Molar mass 150.775 g/mol
Appearancedark brown solid
Density 5.22 g/cm3
Melting point 882 °C (1,620 °F; 1,155 K)
Boiling point about 1230 ˚C
GeS type (orthorhombic), oP8
Pnma, No. 62
a = 11.18 Å, b = 3.98 Å, c = 4.32 Å [2]
asymmetric 3-fold (strongly distorted octahedral)
Occupational safety and health (OHS/OSH):
Main hazards
Related compounds
Other anions
Tin(II) oxide
Tin selenide
Tin telluride
Other cations
Carbon monosulfide
Silicon monosulfide
Germanium monosulfide
Lead(II) sulfide
Related compounds
Tin(IV) sulfide
Tributyl tin sulfide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

Tin(II) sulfide is a chemical compound of tin and sulfur. The chemical formula is SnS. Its natural occurrence concerns herzenbergite (α-SnS), a rare mineral. At elevated temperatures above 905 K, SnS undergoes a second order phase transition to β-SnS (space group: Cmcm, No. 63). [3] In recent years, it has become evident that a new polymorph of SnS exists based upon the cubic crystal system, known as π-SnS (space group: P213, No. 198). [4] [5]



Tin(II) sulfide can be prepared by reacting tin with sulfur, or tin(II) chloride with hydrogen sulfide.

Sn + S → SnS
SnCl2 + H2S → SnS + 2 HCl


Tin(II) sulfide is a dark brown or black solid, insoluble in water, but soluble in concentrated hydrochloric acid. Tin(II) sulfide is insoluble in (NH4)2S. It has a layer structure similar to that of black phosphorus. [6] As per black phosphorus, tin(II) sulfide can be ultrasonically exfoliated in liquids to produce atomically thin semiconducting SnS sheets that have a wider optical band gap (>1.5 eV) compared to the bulk crystal. [7]

Photovoltaic applications

Tin(II) sulfide is an interesting potential candidate for next generation thin-film solar cells. Currently, both cadmium telluride and CIGS (copper indium gallium selenide) are used as p-type absorber layers, but they are formulated from toxic, scarce constituents. [8] Tin(II) sulfide, by contrast, is formed from cheap, earth abundant elements, and is nontoxic. This material also has a high optical absorption coefficient, p-type conductivity, and a mid range direct band gap of 1.3-1.4 eV, required electronic properties for this type of absorber layer. [9] Based on the a detailed balance calculation using the material bandgap, the power conversion efficiency of a solar cell utilizing a tin(II) sulfide absorber layer could be as high as 32%, which is comparable to crystalline silicon. [10] Finally, Tin(II) sulfide is stable in both alkaline and acidic conditions. [11] All aforementioned characteristics suggest tin(II) sulfide as an interesting material to be used as a solar cell absorber layer.

At present, tin(II) sulfide thin films for use in photovoltaic cells are still in the research phase of development with power conversion efficiencies currently less than 5%. [12] Barriers for use include a low open circuit voltage and an inability to realize many of the above properties due to challenges in fabrication, but tin(II) sulfide still remains a promising material if these technical challenges are overcome. [10]

Related Research Articles

Perovskite (structure) Type of crystal structure

A perovskite is any material with a crystal structure following the formula ABX3, which was first discovered as the mineral called perovskite, which consists of calcium titanium oxide (CaTiO3). The mineral was first discovered in the Ural mountains of Russia by Gustav Rose in 1839 and named after Russian mineralogist L. A. Perovski (1792–1856). Where 'A' and 'B' are two ions, often of very different sizes, and X is an ion (frequently oxide) that bonds to both ions. The 'A' atoms are generally larger than the 'B' atoms. The ideal cubic structure has the B cation in 6-fold coordination, surrounded by an octahedron of anions, and the A cation in 12-fold cuboctahedral coordination. Additional perovskite forms may exist where either/both the A and B sites have a configuration of A1x-1A2x and/or B1y-1B2y and the X may deviate from the ideal coordination configuration as ions within the A and B sites undergo changes in their oxidation states.

Cadmium sulfide Chemical compound

Cadmium sulfide is the inorganic compound with the formula CdS. Cadmium sulfide is a yellow solid. It occurs in nature with two different crystal structures as the rare minerals greenockite and hawleyite, but is more prevalent as an impurity substituent in the similarly structured zinc ores sphalerite and wurtzite, which are the major economic sources of cadmium. As a compound that is easy to isolate and purify, it is the principal source of cadmium for all commercial applications. Its vivid yellow color led to its adoption as a pigment for the yellow paint "cadmium yellow" in the 18th century.

Dye-sensitized solar cell Type of thin-film solar cell

A dye-sensitized solar cell is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a photoelectrochemical system. The modern version of a dye solar cell, also known as the Grätzel cell, was originally co-invented in 1988 by Brian O'Regan and Michael Grätzel at UC Berkeley and this work was later developed by the aforementioned scientists at the École Polytechnique Fédérale de Lausanne (EPFL) until the publication of the first high efficiency DSSC in 1991. Michael Grätzel has been awarded the 2010 Millennium Technology Prize for this invention.

Solar cell Photodiode used to produce power from light on a large scale

A solar cell, or photovoltaic cell, is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels. The common single junction silicon solar cell can produce a maximum open-circuit voltage of approximately 0.5 volts to 0.6 volts.

Hybrid solar cells combine advantages of both organic and inorganic semiconductors. Hybrid photovoltaics have organic materials that consist of conjugated polymers that absorb light as the donor and transport holes. Inorganic materials in hybrid cells are used as the acceptor and electron transporter in the structure. The hybrid photovoltaic devices have a potential for not only low-cost by roll-to-roll processing but also for scalable solar power conversion.

Indium(III) sulfide (Indium sesquisulfide, Indium sulfide (2:3), Indium (3+) sulfide) is the inorganic compound with the formula In2S3.

Tin selenide Chemical compound

Tin selenide, also known as stannous selenide, is an inorganic compound with the formula SnSe. Tin(II) selenide is a typical layered metal chalcogenide as it includes a group 16 anion (Se2−) and an electropositive element (Sn2+), and is arranged in a layered structure. Tin(II) selenide is a narrow band-gap (IV-VI) semiconductor structurally analogous to black phosphorus. It has received considerable interest for applications including low-cost photovoltaics, and memory-switching devices.

Quantum dot solar cell Type of solar cell based on quantum dot devices

A quantum dot solar cell (QDSC) is a solar cell design that uses quantum dots as the absorbing photovoltaic material. It attempts to replace bulk materials such as silicon, copper indium gallium selenide (CIGS) or cadmium telluride (CdTe). Quantum dots have bandgaps that are tunable across a wide range of energy levels by changing their size. In bulk materials, the bandgap is fixed by the choice of material(s). This property makes quantum dots attractive for multi-junction solar cells, where a variety of materials are used to improve efficiency by harvesting multiple portions of the solar spectrum.

Organic solar cell

An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells.

Cadmium telluride photovoltaics Type of solar power cell

Cadmium telluride (CdTe) photovoltaics describes a photovoltaic (PV) technology that is based on the use of cadmium telluride in a thin semiconductor layer designed to absorb and convert sunlight into electricity. Cadmium telluride PV is the only thin film technology with lower costs than conventional solar cells made of crystalline silicon in multi-kilowatt systems.

Thin-film solar cell Type of second-generation solar cell

A thin-film solar cell is a second generation solar cell that is made by depositing one or more thin layers, or thin film (TF) of photovoltaic material on a substrate, such as glass, plastic or metal. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon.

Copper indium gallium selenide solar cells

A copper indium gallium selenide solar cell is a thin-film solar cell used to convert sunlight into electric power. It is manufactured by depositing a thin layer of copper, indium, gallium and selenium on glass or plastic backing, along with electrodes on the front and back to collect current. Because the material has a high absorption coefficient and strongly absorbs sunlight, a much thinner film is required than of other semiconductor materials.

A hydrogen sulfide sensor or H2S sensor is a gas sensor for the measurement of hydrogen sulfide.

Solar cell research Research in the field of photovoltaics

There are currently many research groups active in the field of photovoltaics in universities and research institutions around the world. This research can be categorized into three areas: making current technology solar cells cheaper and/or more efficient to effectively compete with other energy sources; developing new technologies based on new solar cell architectural designs; and developing new materials to serve as more efficient energy converters from light energy into electric current or light absorbers and charge carriers.

CZTS Chemical compound

Copper zinc tin sulfide (CZTS) is a quaternary semiconducting compound which has received increasing interest since the late 2000s for applications in thin film solar cells. The class of related materials includes other I2-II-IV-VI4 such as copper zinc tin selenide (CZTSe) and the sulfur-selenium alloy CZTSSe. CZTS offers favorable optical and electronic properties similar to CIGS (copper indium gallium selenide), making it well suited for use as a thin-film solar cell absorber layer, but unlike CIGS (or other thin films such as CdTe), CZTS is composed of only abundant and non-toxic elements. Concerns with the price and availability of indium in CIGS and tellurium in CdTe, as well as toxicity of cadmium have been a large motivator to search for alternative thin film solar cell materials. The power conversion efficiency of CZTS is still considerably lower than CIGS and CdTe, with laboratory cell records of 11.0 % for CZTS and 12.6 % for CZTSSe as of 2019.

Indium acetylacetonate Chemical compound

Indium acetylacetonate, also known as In(acac)3, is a compound with formula In(C5H7O2)3. It is a colorless solid. It adopts an octahedral structure.

Perovskite solar cell Alternative to silicon-based photovoltaics

A perovskite solar cell (PSC) is a type of solar cell which includes a perovskite-structured compound, most commonly a hybrid organic-inorganic lead or tin halide-based material, as the light-harvesting active layer. Perovskite materials, such as methylammonium lead halides and all-inorganic cesium lead halide, are cheap to produce and simple to manufacture.

Amorphous silicon Non-crystalline silicon

Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs.

A tin-based perovskite solar cell is a special type of perovskite solar cell, where the lead is substituted by tin. It has a tin-based perovskite structure (ASnX3), where 'A' is a 1+ cation and 'X' is a monovalent halogen anion. The methylammonium tin triiodide (CH3NH3SnI3) has a band gap of 1.2–1.3 eV, while formamidinium tin triiodide has a band gap of 1.4 eV.


  1. Record of Tin(II) sulfide in the GESTIS Substance Database of the Institute for Occupational Safety and Health, accessed on 4/9/2007.
  2. del Bucchia, S.; Jumas, J.C.; Maurin, M. (1981). "Contribution a l'etude de composes sulfures d'etain (II): Affinement de la structure de Sn S". Acta Crystallogr. B. 37 (10): 1903. doi:10.1107/s0567740881007528.
  3. Wiedemeier, Heribert; von Schnering, Hans Georg (1978-01-01). "Refinement of the structures of GeS, GeSe, SnS and SnSe : Zeitschrift für Kristallographie". Zeitschrift für Kristallographie. 148 (3–4): 295–303. doi:10.1524/zkri.1978.148.3-4.295.
  4. Rabkin, Alexander; Samuha, Shmuel; Abutbul, Ran E.; Ezersky, Vladimir; Meshi, Louisa; Golan, Yuval (2015-03-11). "New Nanocrystalline Materials: A Previously Unknown Simple Cubic Phase in the SnS Binary System". Nano Letters. 15 (3): 2174–2179. Bibcode:2015NanoL..15.2174R. doi:10.1021/acs.nanolett.5b00209. ISSN   1530-6984. PMID   25710674.
  5. Abutbul, R. E.; Segev, E.; Zeiri, L.; Ezersky, V.; Makov, G.; Golan, Y. (2016-01-12). "Synthesis and properties of nanocrystalline π-SnS – a new cubic phase of tin sulphide". RSC Advances. 6 (7): 5848–5855. Bibcode:2016RSCAd...6.5848A. doi:10.1039/c5ra23092f. ISSN   2046-2069.
  6. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1233. ISBN   978-0-08-037941-8.
  7. Brent; et al. (2015). "Tin(II) Sulfide (SnS) Nanosheets by Liquid-Phase Exfoliation of Herzenbergite: IV–VI Main Group Two-Dimensional Atomic Crystals". J. Am. Chem. Soc. 137 (39): 12689–12696. doi: 10.1021/jacs.5b08236 . PMID   26352047.
  8. Ginley, D.; Green, M.A. (2008). "Solar energy conversion towards 1 terawatt". MRS Bulletin. 33 (4): 355–364. doi: 10.1557/mrs2008.71 .
  9. Andrade-Arvizu, Jacob A.; Courel-Piedrahita, Maykel; Vigil-Galán, Osvaldo (2015-04-14). "SnS-based thin film solar cells: perspectives over the last 25 years". Journal of Materials Science: Materials in Electronics. 26 (7): 4541–4556. doi:10.1007/s10854-015-3050-z. ISSN   0957-4522. S2CID   137524157.
  10. 1 2 Nair, P. K.; Garcia-Angelmo, A. R.; Nair, M. T. S. (2016-01-01). "Cubic and orthorhombic SnS thin-film absorbers for tin sulfide solar cells". Physica Status Solidi A. 213 (1): 170–177. Bibcode:2016PSSAR.213..170N. doi:10.1002/pssa.201532426. ISSN   1862-6319.
  11. Sato, N.; Ichimura, E. (2003). "Characterization of electrical properties of SnS thin films prepared by the electrochemical deposition method". Proceedings of 3rd World Conference on Photovoltaic Energy Conversion. A.
  12. Jaramillo, R.; Steinmann, V.; Yang, C.; Chakraborty, R.; Poindexter, J. R. (2015). "Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition". J. Vis. Exp. (99): e52705. doi:10.3791/52705. PMC   4542955 . PMID   26067454.