Tin(IV) sulfide

Last updated
Tin(IV) sulfide
SnS2-bas.png
Names
IUPAC name
Tin(IV) sulfide
Other names
Tin disulfide, Stannic sulfide, Mosaic gold
Identifiers
3D model (JSmol)
ChEBI
ECHA InfoCard 100.013.867 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 215-252-9
PubChem CID
UNII
  • InChI=1S/2S.Sn/q2*-2;+4 X mark.svgN[ inchi ]
    Key: TUTLDIXHQPSHHQ-UHFFFAOYSA-N X mark.svgN[ inchi ]
  • [S-2].[S-2].[Sn+4]
  • (S=Sn=S):S=[Sn]=S
Properties
S2Sn
Molar mass 182.83 g·mol−1
AppearanceGold-yellow powder
Odor Odorless
Density 4.5 g/cm3 [1]
Melting point 600 °C (1,112 °F; 873 K)
decomposes [1]
Insoluble
Solubility Soluble in aq. alkalis, decompose in aqua regia [1]
Insoluble in alkyl acetates, acetone [2]
Structure
Rhombohedral, hP3 [3]
P3m1, No. 164 [3]
3 2/m [3]
a = 3.65 Å, c = 5.88 Å [3]
α = 90°, β = 90°, γ = 120°
Octahedral (Sn4+) [3]
Hazards
GHS labelling:
GHS-pictogram-exclam.svg [4]
Warning
H302, H312, H315, H319, H332, H335 [4]
P261, P280, P301+P312, P302+P352, P304+P340, P305+P351+P338, P332+P313 [4]
NFPA 704 (fire diamond)
[4]
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
0
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Tin(IV) sulfide is a compound with the formula Sn S
2
. The compound crystallizes in the cadmium iodide motif, with the Sn(IV) situated in "octahedral holes' defined by six sulfide centers. [5] It occurs naturally as the rare mineral berndtite. [6] It is useful as semiconductor material with band gap 2.2 eV. [7]

Contents

Reactions

The compound precipitates as a brown solid upon the addition of H
2
S
to solutions of tin(IV) species. This reaction is reversed at low pH. Crystalline SnS
2
has a bronze color and is used in decorative coating [8] where it is known as mosaic gold.

The material also reacts with sulfide salts to give a series of thiostannates with the formula [SnS
2
]
m
[S]2n
n
. A simplified equation for this depolymerization reaction is

SnS
2
+ S2−
1/x[SnS2−
3
]
x
.

Applications

Tin (IV) sulfide has various uses in electrochemistry. It can be used in anodes of lithium ion batteries, where an intercalation process occurs to form Li2S. [9] It can also be used in a similar way in electrodes of supercapacitors, which can be used as alternative source of energy storage. [10]

SnS2 has also been identified as a potential component of thermoelectric devices, which convert thermal energy to electrical energy. In one example, this property was made possible by forming a composite of SnS2 with multiwalled carbon nanotubes. [11]

SnS2 can also be used in wastewater treatment. Forming a membrane with SnS2 and carbon nanofibers can potentially allow for the reduction of certain impurities in water, an example of which is hexavalent chromium. [12]

In general, SnS2 is useful as a semiconductor and can be purchased in powder form for experimental purposes. [13]

See also

Mosaic Gold

Related Research Articles

<span class="mw-page-title-main">Conductive polymer</span> Organic polymers that conduct electricity

Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The main advantage of conductive polymers is that they are easy to process, mainly by dispersion. Conductive polymers are generally not thermoplastics, i.e., they are not thermoformable. But, like insulating polymers, they are organic materials. They can offer high electrical conductivity but do not show similar mechanical properties to other commercially available polymers. The electrical properties can be fine-tuned using the methods of organic synthesis and by advanced dispersion techniques.

<span class="mw-page-title-main">Polysulfide</span>

Polysulfides are a class of chemical compounds derived from anionic chains of sulfur atoms. There are two main classes of polysulfides: inorganic and organic. The inorganic polysulfides have the general formula S2−
n
. These anions are the conjugate bases of polysulfanes H2Sn. Organic polysulfides generally have the formulae R1SnR2, where R = alkyl or aryl.

<span class="mw-page-title-main">Tin(IV) oxide</span> Chemical compound known as stannic oxide, cassiterite and tin ore

Tin(IV) oxide, also known as stannic oxide, is the inorganic compound with the formula SnO2. The mineral form of SnO2 is called cassiterite, and this is the main ore of tin. With many other names, this oxide of tin is an important material in tin chemistry. It is a colourless, diamagnetic, amphoteric solid.

<span class="mw-page-title-main">Lead dioxide</span> Chemical compound

Lead(IV) oxide, commonly known as lead dioxide, is an inorganic compound with the chemical formula PbO2. It is an oxide where lead is in an oxidation state of +4. It is a dark-brown solid which is insoluble in water. It exists in two crystalline forms. It has several important applications in electrochemistry, in particular as the positive plate of lead acid batteries.

A non-carbon nanotube is a cylindrical molecule often composed of metal oxides, or group III-Nitrides and morphologically similar to a carbon nanotube. Non-carbon nanotubes have been observed to occur naturally in some mineral deposits.

<span class="mw-page-title-main">Carbon nanofiber</span>

Carbon nanofibers (CNFs), vapor grown carbon fibers (VGCFs), or vapor grown carbon nanofibers (VGCNFs) are cylindrical nanostructures with graphene layers arranged as stacked cones, cups or plates. Carbon nanofibers with graphene layers wrapped into perfect cylinders are called carbon nanotubes.

<span class="mw-page-title-main">Buckypaper</span> Thin sheet made of aggregated carbon nanotubes

Buckypaper is a thin sheet made from an aggregate of carbon nanotubes or carbon nanotube grid paper. The nanotubes are approximately 50,000 times thinner than a human hair. Originally, it was fabricated as a way to handle carbon nanotubes, but it is also being studied and developed into applications by several research groups, showing promise as vehicle armor, personal armor, and next-generation electronics and displays.

<span class="mw-page-title-main">Tungsten disulfide</span> Chemical compound

Tungsten disulfide is an inorganic chemical compound composed of tungsten and sulfur with the chemical formula WS2. This compound is part of the group of materials called the transition metal dichalcogenides. It occurs naturally as the rare mineral tungstenite. This material is a component of certain catalysts used for hydrodesulfurization and hydrodenitrification.

<span class="mw-page-title-main">Tin selenide</span> Chemical compound

Tin selenide, also known as stannous selenide, is an inorganic compound with the formula SnSe. Tin(II) selenide is a typical layered metal chalcogenide as it includes a group 16 anion (Se2−) and an electropositive element (Sn2+), and is arranged in a layered structure. Tin(II) selenide is a narrow band-gap (IV-VI) semiconductor structurally analogous to black phosphorus. It has received considerable interest for applications including low-cost photovoltaics, and memory-switching devices.

<span class="mw-page-title-main">Lead(IV) sulfide</span> Chemical compound

Lead(IV) sulfide is a chemical compound with the formula PbS2. This material is generated by the reaction of the more common lead(II) sulfide, PbS, with sulfur at >600 °C and at high pressures. PbS2, like the related tin(IV) sulfide SnS2, crystallises in the cadmium iodide motif, which indicates that Pb should be assigned the formal oxidation state of 4+.

<span class="mw-page-title-main">Lithium-ion capacitor</span> Hybrid type of capacitor

A lithium-ion capacitor is a hybrid type of capacitor classified as a type of supercapacitor. It is called a hybrid because the anode is the same as those used in lithium-ion batteries and the cathode is the same as those used in supercapacitors. Activated carbon is typically used as the cathode. The anode of the LIC consists of carbon material which is often pre-doped with lithium ions. This pre-doping process lowers the potential of the anode and allows a relatively high output voltage compared to other supercapacitors.

<span class="mw-page-title-main">Electrocatalyst</span> Catalyst participating in electrochemical reactions

An electrocatalyst is a catalyst that participates in electrochemical reactions. Electrocatalysts are a specific form of catalysts that function at electrode surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst can be heterogeneous such as a platinized electrode. Homogeneous electrocatalysts, which are soluble, assist in transferring electrons between the electrode and reactants, and/or facilitate an intermediate chemical transformation described by an overall half reaction. Major challenges in electrocatalysts focus on fuel cells.

A potassium-ion battery or K-ion battery is a type of battery and analogue to lithium-ion batteries, using potassium ions for charge transfer instead of lithium ions. It was invented by the Iranian/American chemist Ali Eftekhari in 2004.

<span class="mw-page-title-main">Molybdate</span> Chemical compound of the form –O–MoO₂–O–

In chemistry, a molybdate is a compound containing an oxyanion with molybdenum in its highest oxidation state of 6: O−Mo(=O)2−O. Molybdenum can form a very large range of such oxyanions, which can be discrete structures or polymeric extended structures, although the latter are only found in the solid state. The larger oxyanions are members of group of compounds termed polyoxometalates, and because they contain only one type of metal atom are often called isopolymetalates. The discrete molybdenum oxyanions range in size from the simplest MoO2−
4
, found in potassium molybdate up to extremely large structures found in isopoly-molybdenum blues that contain for example 154 Mo atoms. The behaviour of molybdenum is different from the other elements in group 6. Chromium only forms the chromates, CrO2−
4
, Cr
2
O2−
7
, Cr
3
O2−
10
and Cr
4
O2−
13
ions which are all based on tetrahedral chromium. Tungsten is similar to molybdenum and forms many tungstates containing 6 coordinate tungsten.

<span class="mw-page-title-main">Titanium disulfide</span> Inorganic chemical compound

Titanium disulfide is an inorganic compound with the formula TiS2. A golden yellow solid with high electrical conductivity, it belongs to a group of compounds called transition metal dichalcogenides, which consist of the stoichiometry ME2. TiS2 has been employed as a cathode material in rechargeable batteries.

<span class="mw-page-title-main">Carbon nanotube supported catalyst</span> Novel catalyst using carbon nanotubes as the support instead of the conventional alumina

Carbon nanotube supported catalyst is a novel supported catalyst, using carbon nanotubes as the support instead of the conventional alumina or silicon support. The exceptional physical properties of carbon nanotubes (CNTs) such as large specific surface areas, excellent electron conductivity incorporated with the good chemical inertness, and relatively high oxidation stability makes it a promising support material for heterogeneous catalysis.

<span class="mw-page-title-main">Supercapacitor</span> High-capacity electrochemical capacitor

A supercapacitor (SC), also called an ultracapacitor, is a high-capacity capacitor, with a capacitance value much higher than solid-state capacitors but with lower voltage limits. It bridges the gap between electrolytic capacitors and rechargeable batteries. It typically stores 10 to 100 times more energy per unit volume or mass than electrolytic capacitors, can accept and deliver charge much faster than batteries, and tolerates many more charge and discharge cycles than rechargeable batteries.

<span class="mw-page-title-main">Pseudocapacitance</span> Storage of electricity within an electrochemical cell

Pseudocapacitance is the electrochemical storage of electricity in an electrochemical capacitor known as a pseudocapacitor. This faradaic charge transfer originates by a very fast sequence of reversible faradaic redox, electrosorption or intercalation processes on the surface of suitable electrodes. Pseudocapacitance is accompanied by an electron charge-transfer between electrolyte and electrode coming from a de-solvated and adsorbed ion. One electron per charge unit is involved. The adsorbed ion has no chemical reaction with the atoms of the electrode since only a charge-transfer takes place.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

<span class="mw-page-title-main">Cerium(III) sulfide</span> Chemical compound

Cerium(III) sulfide, also known as cerium sesquisulfide, is an inorganic compound with the formula Ce2S3. It is the sulfide salt of cerium(III) and exists as three polymorphs with different crystal structures.

References

  1. 1 2 3 Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. ISBN   978-1-4200-9084-0.
  2. Comey, Arthur Messinger; Hahn, Dorothy A. (February 1921). A Dictionary of Chemical Solubilities: Inorganic (2nd ed.). New York: The MacMillan Company. p. 1080.
  3. 1 2 3 4 5 Voort, G.F. Vander, ed. (2004). "Crystal Structure*" (PDF). ASM Handbook. 9 (Metallography and Microstructures): 29–43. doi:10.1361/asmhba0003722 (inactive 31 January 2024).{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link)
  4. 1 2 3 4 "SDS of Stannic sulfide" (PDF). pfaltzandbauer.com. Connecticut, USA: Pfaltz & Bauer, Inc. Retrieved 2014-07-13.
  5. Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN   0-19-855370-6.
  6. Vaughan, D. J.; Craig, J. R. "Mineral Chemistry of Metal Sulfides" Cambridge University Press, Cambridge: 1978. ISBN   0-521-21489-0.
  7. L.A.Burton et al., J. Mater. Chem. A, 2016, 4, 1312-1318 DOI: 10.1039/C5TA08214E.
  8. Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN   0-12-352651-5.
  9. Cupid, D. M.; Rezqita, A.; Glibo, A.; Artner, M.; Bauer, V.; Hamid, R.; Jahn, M.; Flandorfer, H. (2021). "Understanding and Modelling the Thermodynamics and Electrochemistry of Lithiation of Tin (IV) Sulfide as an Anode Active Material for Lithium Ion Batteries". Electrochim. Acta. 375.
  10. Setayeshmehr, M.; Haghighi, M.; Mirabbaszadeh, K. (2021). "A Review of Tin Disulfide (SnS2) Composite Electrode Materials for Supercapacitors". Energy Storage. 4.
  11. Park, D.; Kim, M.; Kim, J. (2022). "Strongly Coupled Tin(IV) Sulfide—MultiWalled Carbon Nanotube Hybrid Composites and Their Enhanced Thermoelectric Properties". Inorg. Chem. 61: 3723–3729.
  12. Zhong, Y.; Qiu, X.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. (2016). "Flexible Electrospun Carbon Nanofiber/Tin(IV) Sulfide Core/Sheath Membranes for Photocatalytically Treating Chromium(VI)-Containing Wastewater". ACS Appl. Mater. Interfaces. 8: 28671–28677.
  13. "Tin (IV) Sulfide (SnS2) Powder/Chunk/Lumps (CAS No.1315-01-1) | Stanford Advanced Materials". www.samaterials.com. Retrieved 2023-11-21.