Tingye Li

Last updated

Tingye Li
Tingye Li.jpg
Born(1931-07-07)July 7, 1931
Nanjing, Republic of China
DiedDecember 27, 2012(2012-12-27) (aged 81)
Snowbird, Utah, United States
NationalityAmerican
Alma mater University of the Witwatersrand
Northwestern University
Awards IEEE Baker Prize (1975)
OSA Frederic Ives Medal (1997)
IEEE Photonics Award (2004)
IEEE Edison Medal (2009)
Scientific career
Fields Applied physics, Optical communication
Institutions AT&T

Tingye Li (simplified Chinese :厉鼎毅; traditional Chinese :厲鼎毅; pinyin :Lì Dǐngyì; July 7, 1931 – December 27, 2012) was a Chinese-American scientist in the fields of microwaves, lasers and optical communications. His innovative work at AT&T pioneered the research and application of lightwave communication, and has had a far-reaching impact on information technology for over four decades. [1]

Contents

Education and research

Tingye Li was born on July 7, 1931 [2] [3] in Nanjing, Jiangsu Province, the eldest son of a diplomat. His father was a senior officer of the Chinese Foreign Ministry (before 1949, the Republic of China) and served as an ambassador to several countries. At the age of 12, Li and his family left China to join his father in Canada. Later they lived in South Africa before eventually settling in the United States.

Tingye obtained his bachelor's degree from the School of Electrical and Information Engineering at the University of the Witwatersrand in Johannesburg, South Africa, and his Ph.D. from Northwestern University. After graduating in 1957, he began working at Bell Telephone Laboratories (later AT&T Bell Laboratories), working there for 41 years until his retirement from AT&T Labs in 1998. During his tenure at AT&T, he wrote and contributed to many journal papers, patents, and books in the areas of antennas, microwave propagation, lasers and optical communications.

In 1961, Li and his colleague A. Gardner Fox published a paper titled Resonant modes in a maser interferometer, which showed that "a laser beam bouncing back and forth between a pair of mirrors can resonate for a number of modes of energy distribution and for each of these traverse modes there is a different characteristic phase velocity and attenuation per transit." They used computer simulation techniques to obtain their data. This work was the first to point out that an open-sided resonator containing a laser medium should have unique modes of propagation, which is fundamental to the theory and practice of lasers. This work is now considered a classic and has been cited over 595 times (SCI) since its publication in 1961 until 1979 when Mr. Fox recalled and gave some remarks on their work. The work has been cited over 2000 times (Google Scholar) till Oct. 2024.

From the late 1960s, Li engaged in pioneering research on lightwave technologies and systems, which are now ubiquitously deployed in the telecommunications industry. In the late 1980s, when the whole world's attention on optical communication was still focused on a single-channel high-speed solution, he and his team developed the world's first (sparse channel) wavelength-division multiplexing (WDM) system at AT&T Bell Labs. With the understanding that a technique can only be put into real use if it remains backward compatible with existing technology, he and his team proposed and studied the use of optical amplifiers in WDM systems, which utilized the existing embedded base to create virtual fibers by putting more channels onto a single fiber. Their experiment in 1992 at Roaring Creek turned out to be a "roaring success" as Li claimed in an interview, allowing 2.5 Gbit/s transmission per channel, the highest rate available at the time. The use of optical amplifiers changed the paradigm of network economics and is considered to be of revolutionary significance (though evolutionary in design) in the history of lightwave communications.

Li was active in a number of academic societies. He was the initiator of many conferences in optical communication and has often been invited to give plenary speeches. Because of his outstanding contribution and spirit of service, he was elected the President of the Optical Society of America (OSA) in 1995. He was also a member of the National Academy of Engineering, the Academia Sinica (Taiwan) and the Chinese Academy of Engineering.

Years at AT&T
DivisionPositionYears
Radio Research DepartmentResearcher1957–1967
Repeater Techniques Research DepartmentDirector1967–1976
Lightwave Media Research DepartmentDirector1976–1984
Lightwave Systems Research DepartmentDirector1984–1996
AT&T Labs-Research, Communications
Infrastructure Research Laboratory
Division Manager1996–1998
AT&T Consultant1999–2002

Chinese heritage

Tingye Li's father Chao Li (厲斯昭) had served in the Chinese government for many years. His mother Lily Hsieh(謝緯鵬) held a degree in Chinese literature from Ginling College, and was an activist in the Chinese women's liberation movement. His father-in-law K. C. Wu was an important figure in China's modern history and was a governor of Taiwan. Dr. Li has also made a great contribution to the development of China's optical communication industry. He contributed significantly to the technical exchanges between US and Chinese scientists and technologists at both sides of the Taiwan Strait. He has introduced many world-class experts to lecture in China, bringing to the country the state-of-art technology in optical communication. Thanks to his effort, the research and application of optical communication in China has made a great progress in the recent 30 years. He was named an honorary professor at many top-tier universities in China (including Tsinghua University, Peking University, Shanghai Jiao Tong University, Beijing University of Posts and Telecommunications, Northern Jiaotong University, Fudan University, Nankai University, Tianjin University, University of Electronic Science and Technology of China, and Qufu Normal University), elected as the very first foreign member of the Chinese Academy of Engineering and member of the Academia Sinica in Taiwan, and was granted honorary doctoral degrees by National Chiao Tung University in Taiwan and his mother school the University of the Witwatersrand.

Philosophy

Li has said that developing components and devices must involve good understanding of systems applications and systems economics. This methodology was reflected in his introduction of optical amplifiers in WDM which offered network providers a graceful upgrade. Li has also mentored many younger colleagues, and was known to many as "Uncle Tingye."

Personal

Li's speeches, even on some dull technical topics, are known to be quite entertaining. One example was at the ITCom 2001 conference, where he gave a talk titled "Crouching Technologies and Hidden Profits", a play on the film "Crouching Tiger, Hidden Dragon".

Li believed component research must involve good system understanding. One of his famous quotations was "good physicists upgrade themselves into system engineers." He also coined the term phantomics referring to research efforts in photonic technologies that are looking for a use that is very unclear or unreal.

Dr. Tingye Li lived with his wife Edith Wu (simplified Chinese :吴修惠; traditional Chinese :吳修惠; pinyin :Wú Xīuhuì) in Boulder, Colorado. He was an independent consultant in the field of lightwave communications. His brother Ting-Kai Li (simplified Chinese :厉鼎凯; traditional Chinese :厲鼎凱; pinyin :Lì Dǐngkaǐ, 1934–November 18, 2018) was a prominent medical scientist and served as the director of the National Institute on Alcohol Abuse and Alcoholism (NIAAA) between 2002 and 2008. [4] [5] His brother-in-law, Sherman Wu, was an activist and academic at Northwestern University.

He died on December 27, 2012, in Snowbird, Utah. [3] [6] [7]

Companies

Dr. Li was active in fostering innovation through new companies. He was heavily involved in New Focus, Kotura, and a number of others. He was also a co-founder, member of the Board of Directors, and active contributor with Insight Photonic Solutions, Inc.

Quotation

- Tingye Li at OFC '02, adapted from "Ode to the West Wind", by Percy Bysshe Shelley

Awards and honors

Books

See also

Related Research Articles

<span class="mw-page-title-main">Photonics</span> Technical applications of optics

Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in the form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing.

David Neil Payne is a British professor of photonics who is director of the Optoelectronics Research Centre at the University of Southampton. He has made several contributions in areas of optical fibre communications over the last fifty years and his work has affected telecommunications and laser technology. Payne’s work spans diverse areas of photonics, from telecommunications and optical sensors to nanophotonics and optical materials, including the introduction of the first optical fibre drawing tower in a university.

The John Tyndall Award is given to the "individual who has made pioneering, highly significant, or continuing technical or leadership contributions to fiber optics technology". The award is named after John Tyndall (1820-1893), who demonstrated for the first time internal reflection.

Stewart David Personick is an American researcher in telecommunications and computer networking. He worked at Bell Labs, TRW, and Bellcore, researching optical fiber receiver design, propagation in multi-mode optical fibers, time-domain reflectometry, and the end-to-end modeling of fiber-optic communication systems.

Stewart E. Miller was a noted American pioneer in microwave and optical communications.

<span class="mw-page-title-main">Robert L. Byer</span> American physicist

Robert Louis Byer is a physicist. He was president of the Optical Society of America in 1994 and of the American Physical Society in 2012.

The IEEE Photonics Society, formerly the IEEE Lasers and Electro-Optics Society (LEOS), is a society of the Institute of Electrical and Electronics Engineers (IEEE), focused on the scientific and engineering knowledge about the field of quantum electronics. In the hierarchy of IEEE, the Photonics Society is one of the close to 40 technical societies organized under the IEEE Technical Activities Board.

Rod C. Alferness was president of The Optical Society in 2008.

<span class="mw-page-title-main">Anthony M. Johnson</span> American physicist, ultrafast optics (born 1954)

Anthony Michael Johnson is an American experimental physicist, a professor of physics, and a professor of computer science and electrical engineering at the University of Maryland, Baltimore County (UMBC). He is the director of the Center for Advanced Studies in Photonics Research (CASPR), also situated on campus at UMBC. Since his election to the 2002 term as president of the Optical Society, formerly the Optical Society of America, Johnson has the distinction of being the first and only African-American president to date. Johnson's research interests include the ultrafast photophysics and nonlinear optical properties of bulk, nanostructured, and quantum well semiconductor structures, ultrashort pulse propagation in fibers and high-speed lightwave systems. His research has helped to better understand processes that occur in ultrafast time frames of 1 quadrillionth of a second. Ultrashort pulses of light have been used to address technical and logistical challenges in medicine, telecommunications, homeland security, and have many other applications that enhance contemporary life.

The IEEE Photonics Award is a Technical Field Award established by the IEEE Board of Directors in 2002. This award is presented for outstanding achievements in photonics, including work relating to: light-generation, transmission, deflection, amplification and detection and the optical/electro-optical componentry and instrumentation used to accomplish these functions. Also included are storage technologies utilizing photonics to read or write data and optical display technologies. It also extends from energy generation/propagation, communications, information processing, storage and display, biomedical and medical uses of light and measurement applications.

<span class="mw-page-title-main">Kenneth O. Hill</span>

Kenneth O. Hill is a Mexican Canadian physicist who specializes in the field of photonics. In the late 1970s, he discovered the phenomena of photosensitivity in optical fiber and has worked extensively in its applications. He first demonstrated Fiber Bragg gratings and their applications in optical communication and optical sensor systems. Further areas of his discovery and innovation include the phase mask technique for grating fabrication, fiber grating dispersion compensators, and wavelength selective fiber filters, multiplexers and demultiplexers. This field of research has led to the ability to create high speed fiber optic networks as well as many other communication applications that have revolutionized the telecommunications industry.

<span class="mw-page-title-main">Constance J. Chang-Hasnain</span> American electrical engineer

Constance J. Chang-Hasnain is a Taiwanese-American chemical engineer who is the chairperson and founder of Berxel Photonics Co. Ltd. and Whinnery Professor Emerita of the University of California, Berkeley. She was President of Optica in 2021.

<span class="mw-page-title-main">Herwig Kogelnik</span>

Herwig Kogelnik is an Austrian-American electrical and optical engineer. He is best known for his fundamental contributions to the developments in laser technology, optoelectronics, photonics and lightwave communications systems. His work over a 40-year career at Bell Labs earned him the Marconi Prize, the IEEE Medal of Honor, the National Medal of Technology and many other awards.

<span class="mw-page-title-main">Paul Prucnal</span> American electrical engineer

Paul R. Prucnal is an American electrical engineer. He is a professor of electrical engineering at Princeton University. He is best known for his seminal work in Neuromorphic Photonics, optical code division multiple access (OCDMA) and the invention of the terahertz optical asymmetric demultiplexor (TOAD). He is currently a fellow of IEEE for contributions to photonic switching and fiber-optic networks, Optical Society of America and National Academy of Inventors.

<span class="mw-page-title-main">Yasuharu Suematsu</span> Japanese scientist

Yasuharu Suematsu is a Japanese researcher and educator specializing in optical communication technology. His research has included the development of Dynamic Single Mode Semiconductor Lasers for actuation and the development of high-capacity, long-distance optical fiber communications technology.

<span class="mw-page-title-main">Biswanath Mukherjee</span> Indian-American Distinguished Professor of computer science

Biswanath Mukherjee is an Indian-American Distinguished Professor of computer science at the University of California, Davis. He was named a fellow of the IEEE for his work in the development of architectures, algorithms, and protocols in optical networks.

John Michael Dallesasse is a Professor of Electrical and Computer Engineering at the University of Illinois at Urbana–Champaign where his research is focused on silicon photonic integrated circuits (PICs), nanophotonics, semiconductor lasers / transistor lasers and photonics-electronics integration. He has over 60 publications and presentations, and holds 29 issued patents.

Govind P. Agrawal is an Indian American physicist and a fellow of Optica, Life Fellow of the IEEE, and Distinguished Fellow of the Optical Society of India. He is the recipient of James C. Wyant Professorship of Optics at the Institute of Optics and a professor of physics at the University of Rochester. He is also a Distinguished scientist at the Laboratory for Laser Energetics (LLE) in the University of Rochester. Agrawal has authored and co-authored several highly cited books in the fields of non-linear fiber optics, optical communications, and semiconductor lasers.

<span class="mw-page-title-main">John E. Bowers</span> American physicist, engineer, and researcher

John E. Bowers is an American physicist, engineer, researcher and educator. He holds the Fred Kavli Chair in Nanotechnology, the director of the Institute for Energy Efficiency and a distinguished professor in the Departments of Electrical and Computer Engineering and Materials at University of California, Santa Barbara. He was the deputy director of American Institute of Manufacturing of Integrated Photonics from 2015 to 2022.

Gabriella Bosco is an Italian engineer and professor at the Department of Electronics and Telecommunications of the Polytechnic University of Turin. She is the current editor-in-chief of the Journal of Lightwave Technology, and a Fellow of the Optical Society of America and the Institute of Electrical and Electronics Engineers.

References

  1. "Tingye Li". IEEE Global History Network. IEEE. Retrieved July 25, 2011.
  2. Yung Jui (Ray) Chen (August 2011). "Report on the Special Symposium at OECC 2011 that Pays Special Tribute to Dr. Tingye Li on his 80th Birthday". News. IEEE Photonics Society. Archived from the original on August 3, 2016. Retrieved January 8, 2013.
  3. 1 2 Douglas Martin (January 6, 2013). "Tingye Li Dies at 81; Played Crucial Role in Laser's Development". The New York Times . Retrieved January 8, 2013.
  4. "Ting-Kai Li, M.D. Named New Director of NIH's Alcohol Research Institute". News releases. National Institute on Alcohol Abuse and Alcoholism. September 10, 2002. Retrieved January 4, 2013.
  5. Warren, Kenneth R. "Director's Page". National Institute on Alcohol Abuse and Alcoholism. Retrieved January 4, 2013.
  6. "Tingye Li, laser pioneer and optical fibers expert, dies at 81". SPIE Newsroom. SPIE. December 28, 2012. Retrieved December 30, 2012.
  7. "OSA Mourns the Loss of Tingye Li, 1931-2012, OSA Past President". News Releases. Optical Society. December 30, 2012. Retrieved December 30, 2012.
  8. "IEEE W.R.G. Baker Prize Paper Award Recipients" (PDF). IEEE. Archived from the original (PDF) on June 29, 2011. Retrieved January 4, 2011.
  9. "Award Winners - John Tyndall Award". IEEE Photonics Society. Archived from the original on November 8, 2010. Retrieved January 4, 2011.