Tipson–Cohen reaction

Last updated

The Tipson–Cohen reaction is a name reaction first discovered by Stuart Tipson and Alex Cohen at the National Bureau of Standards in Washington D.C. [1] The Tipson–Cohen reaction occurs when two neighboring secondary sulfonyloxy groups in a sugar molecule are treated with zinc dust (Zn) and sodium iodide (NaI) in a refluxing solvent such as N,N-dimethylformamide (DMF) to give an unsaturated carbohydrate. [2]

A name reaction is a chemical reaction named after its discoverers or developers. Among the tens of thousands of organic reactions that are known, hundreds of such reactions are well-known enough to be named after people. Well-known examples include the Grignard reaction, the Sabatier reaction, the Wittig reaction, the Claisen condensation, the Friedel-Crafts acylation, and the Diels-Alder reaction. Books have been published devoted exclusively to name reactions; the Merck Index, a chemical encyclopedia, also includes an appendix on name reactions.

Contents

Background

Unsaturated carbohydrates are desired as they are versatile building blocks that can be used in a variety of reactions. [2] For example, they can be used as intermediates in the synthesis of natural products, or as dienophiles in the Diels-Alder reaction, or as precursors in the synthesis of oligosaccharides. [3] The Tipson–Cohen reaction goes through a syn or anti elimination mechanism to produce an alkene in high to moderate yields. [4] The reaction depends on the neighboring substituents. A mechanism for glucopyranosides and mannooyranosides is shown below. [4]

Scheme 1 Noren Hirani.gif

Scheme 1:Syn elimination occurs with the glucopyranosides. Galactopyranosides follows a similar syn mechanism. [3] Whereas, anti elimination occurs with mannopyranosides. [4] Note that R could be a methanesulfonyl CH2O2S (Ms), or a toluenesulfonyl CH3C6H4O2S (Ts).

Reaction mechanism

Scheme 2 Noren Hirani.gif

Scheme 3: The scheme illustrates the first displacement, the rate determining step and slowest step, where the starting material is converted to the iodo-intermediate. [4] The intermediate is not detectable as it is rapidly converted to the unsaturated sugar. Experiments with azide instead of the iodide confirmed attack occurs at the C-3 as nitrogen-intermediates were isolated. The order of reactivity from most reactive to least reactive is: β-glucopyranosides > β-mannopyranosides > α-glucopyranosides> α-mannopyranosides.

The reaction of β–mannopyranosides gives low yields and required longer reaction times than with β-glucopyranosides due to the presence of a neighboring axial substituent (sulfonyloxy) relative to C-3 sulfonyloxy group in the starting material. [4] The axial substituent increases the steric interactions in the transition state, causing unfavorable eclipsing of the two sulfonyloxy groups. α-Glucopyranosides possess a β-trans-axial substituent relative to C-3 sulfonyloxy (anomeric OCH3 group) in the starting material. The β-trans-axial substituent influences the transition state by also causing an unfavorable steric interaction between the two groups. In the case of α-mannopyranosides, both a neighboring axial substituent (2-sulfonyloxy group) and a β-trans-axial substituent (anomeric OCH3 group) are present, therefore significantly increasing the reaction time and decreasing the yield. [3]

Reaction conditions

Table 1: Reaction times and yield vary on the substrate. The β-glucopyranoside was found to be the best substrate for the Tipson–Cohen reaction as the reaction time and yield were much superior that any other substrate proposed in the study. [3]

Substratea Time (hours) Yield (%)
β-glucopyranoside 0.5 85
β-mannopyranoside 2.5 66
α-glucopyranoside 12 55
α-mannopyranoside 15 10

aSubstrates possess benzylidene protecting groups at C-4 and C-6, OMe groups at anomeric position and OTs groups at C-2 and C-3. Reaction temperature 95–100 ˚C

Reaction scope

Related Research Articles

In chemistry, a glycosidic bond or glycosidic linkage is a type of covalent bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.

In organic chemistry, the Diels–Alder reaction is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile, to form a substituted cyclohexene derivative. It is the prototypical example of a pericyclic reaction with a concerted mechanism. More specifically, it is classified as a thermally-allowed [4+2] cycloaddition with Woodward–Hoffmann symbol [π4s + π2s]. It was first described by Otto Diels and Kurt Alder in 1928. For the discovery of this reaction, they were awarded the Nobel Prize in Chemistry in 1950. Through the simultaneous construction of two new carbon–carbon bonds, the Diels–Alder reaction provides a reliable way to form six-membered rings with good control over the regio- and stereochemical outcomes. Consequently, it has served as a powerful and widely applied tool for the introduction of chemical complexity in the synthesis of natural products and new materials. The underlying concept has also been applied to π-systems involving heteroatoms, such as carbonyls and imines, which furnish the corresponding heterocycles; this variant is known as the hetero-Diels–Alder reaction. The reaction has also been generalized to other ring sizes, although none of these generalizations have matched the formation of six-membered rings in terms of scope or versatility. Because of the negative values of ΔH° and ΔS° for a typical Diels–Alder reaction, the microscopic reverse of a Diels–Alder reactions becomes favorable at high temperatures, although this is of synthetic importance for only a limited range of Diels-Alder adducts, generally with some special structural features; this reverse reaction is known as the retro-Diels–Alder reaction.

Amino sugar monosaccharide having one alcoholic hydroxy group (commonly but not necessarily in position 2) replaced by an amino group; systematically known as x-amino-x-deoxymonosaccharides. (Glycosylamines are excluded)

In organic chemistry, an amino sugar is a sugar molecule in which a hydroxyl group has been replaced with an amine group. More than 60 amino sugars are known, with one of the most abundant being N-Acetyl-d-glucosamine, which is the main component of chitin.

<i>n</i>-Octyl <i>beta</i>-<small>D</small>-thioglucopyranoside chemical compound

n-Octyl β-D-thioglucopyranoside is a mild nonionic detergent that is used for cell lysis or to solubilise membrane proteins without denaturing them. This is particularly of use in order to crystallise them or to reconstitute them into lipid bilayers. It has a critical micelle concentration of 9 mM.

An anomer is a type of geometric variation found at certain atoms in carbohydrate molecules. An epimer is a stereoisomer that differs in configuration at any single stereogenic center. An anomer is an epimer at the hemiacetal/acetal carbon in a cyclic saccharide, an atom called the anomeric carbon. The anomeric carbon is the carbon derived from the carbonyl carbon of the open-chain form of the carbohydrate molecule. Anomerization is the process of conversion of one anomer to the other. As is typical for stereoisomeric compounds, different anomers have different physical properties, melting points and specific rotations.

The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step. As such, there is no obvious retron for this reaction. Originally reported by Nikolai Kischner in 1911 and Ludwig Wolff in 1912, it has been applied to the total synthesis of scopadulcic acid B, aspidospermidine and dysidiolide.

Glycal is a name for cyclic enol ether derivatives of sugars having a double bond between carbon atoms 1 and 2 of the ring. The term “glycal” should not be used for an unsaturated sugar that has a double bond in any position other than between carbon atoms 1 and 2.

Nucleophilic conjugate addition

Nucleophilic conjugate addition is a type of organic reaction. Ordinary nucleophilic additions or 1,2-nucleophilic additions deal mostly with additions to carbonyl compounds. Simple alkene compounds do not show 1,2 reactivity due to lack of polarity, unless the alkene is activated with special substituents. With α,β-unsaturated carbonyl compounds such as cyclohexenone it can be deduced from resonance structures that the β position is an electrophilic site which can react with a nucleophile. The negative charge in these structures is stored as an alkoxide anion. Such a nucleophilic addition is called a nucleophilic conjugate addition or 1,4-nucleophilic addition. The most important active alkenes are the aforementioned conjugated carbonyls and acrylonitriles.

Anomeric effect stereoelectronic effect, tendency of heteroatomic substituents adjacent to a heteroatom within a cyclohexane ring to prefer the axial orientation instead of the less hindered equatorial orientation that would be expected from steric considerations

In organic chemistry, the anomeric effect or Edward-Lemieux effect is a stereoelectronic effect that describes the tendency of heteroatomic substituents adjacent to a heteroatom within a cyclohexane ring to prefer the axial orientation instead of the less hindered equatorial orientation that would be expected from steric considerations. This effect was originally observed in pyranose rings by J. T. Edward in 1955 when studying carbohydrate chemistry.

'Carbohydrate chemistry' is a subdiscipline of [chemistry] primarily concerned with the synthesis, structure, and function of [carbohydrate]. Due to the general structure of carbohydrates, their synthesis is often preoccupied with the selective formation of glycosidic linkages and the selective reaction of hydroxyl groups; as a result, it relies heavily on the use of protecting groups.

The Ei mechanism, also known as a thermal syn elimination or a pericyclic syn elimination, in organic chemistry is a special type of elimination reaction in which two vicinal substituents on an alkane framework leave simultaneously via a cyclic transition state to form an alkene in a syn elimination. This type of elimination is unique because it is thermally activated and does not require additional reagents unlike regular eliminations which require an acid or base, or would in many cases involve charged intermediates. This reaction mechanism is often found in pyrolysis.

Methanesulfonyl chloride (mesyl chloride) is an organosulfur compound with the formula CH3SO2Cl. It is a colourless liquid that dissolves in polar organic solvents but is reactive toward water, alcohols, and many amines. The simplest organic sulfonyl chloride, it is used to make methanesulfonates and to generate the elusive molecule sulfene.

A chemical gycosylation reaction involves the coupling of a glycosyl donor, to a glycosyl acceptor forming a glycoside. If both the donor and acceptor are sugars, then the product is an oligosaccharide. The reaction requires activation with a suitable activating reagent. The reactions often result in a mixture of products due to the creation of a new stereogenic centre at the anomeric position of the glycosyl donor. The formation of a glycosidic linkage allows for the synthesis of complex polysaccharides which may play important roles in biological processes and pathogenesis and therefore having synthetic analogs of these molecules allows for further studies with respect to their biological importance.

The Ferrier carbocyclization is an organic reaction that was first reported by the carbohydrate chemist Robert J. Ferrier in 1979. It is a metal-mediated rearrangement of enol ether pyrans to cyclohexanones. Typically, this reaction is catalyzed by mercury salts, specifically mercury(II) chloride.

Carbohydrate conformation refers to the overall three-dimensional structure adopted by a carbohydrate (saccharide) molecule as a result of the through-bond and through-space physical forces it experiences arising from its molecular structure. The physical forces that dictate the three-dimensional shapes of all molecules—here, of all monosaccharide, oligosaccharide, and polysaccharide molecules—are sometimes summarily captured by such terms as "steric interactions" and "stereoelectronic effects".

The Crich β-mannosylation is a synthetic strategy which is used in carbohydrate synthesis to generate a 1,2-cis-glycosidic bond. This type of linkate is generally very difficult to make, and specific methods like the Crich β-mannosylation are used to overcome these issues.

Carbohydrate synthesis is a sub-field of organic chemistry concerned specifically with the generation of natural and unnatural carbohydrate structures. This can include the synthesis of monosaccharide residues or structures containing more than one monosaccharide, known as oligosaccharides.

Reductions with samarium(II) iodide involve the conversion of various classes of organic compounds into reduced products through the action of samarium(II) iodide, a mild one-electron reducing agent.

The Pinnick oxidation is an organic reaction by which aldehydes can be oxidized into their corresponding carboxylic acids using sodium chlorite (NaClO2) under mild acidic conditions. It was originally developed by Lindgren and Nilsson. The typical reaction conditions used today were developed by G. A. Kraus. H.W. Pinnick later demonstrated that these conditions could be applied to oxidize α,β-unsaturated aldehydes. There exist many different reactions to oxidize aldehydes, but only a few are amenable to a broad range of functional groups. The Pinnick oxidation has proven to be both tolerant of sensitive functionalities and capable of reacting with sterically hindered groups. This reaction is especially useful for oxidizing α,β-unsaturated aldehydes, and another one of its advantages is its relatively low cost.

Vinyl iodide functional group

In organic chemistry, a vinyl iodide functional group is any alkene with an iodide substituent directly bonded to one of the alkene carbons (sp2). Vinyl iodides are versatile molecules that serve as important building blocks and precursors in organic synthesis. They are commonly used in carbon-carbon forming reactions in transition-metal catalyzed cross-coupling reactions, such as Heck reaction, Sonogashira coupling, and Suzuki coupling. Synthesis of well-defined geometry or complexity vinyl iodide is important in stereoselective synthesis of natural products and drugs.

References

  1. 1 2 3 R.S. Tipson & A. Cohen (1965). "Action of zinc dust and sodium iodide in N,N-dimethylformamide on contiguous, secondary sulfonyloxy groups: A simple method for introducing nonterminal unsaturation". Carbohydrate Research. 1 (4): 338–340. doi:10.1016/S0008-6215(00)81770-X.
  2. 1 2 3 E.Albano, D. Horton & T. Tsuchiya (1966). "Synthesis and reactions of unsaturated sugars". Carbohydrate Research. 2 (5): 349–362. doi:10.1016/S0008-6215(00)80329-8.
  3. 1 2 3 4 5 T. Yamazaki & K. Matsuda (1976). "Synthesis of methyl 4,6-O-benzylidene-2,3-dideoxy-β-D-erythro-hex-2-enopyranoside by the Tipson-Cohen reaction". Carbohydrate Research. 50 (2): 279–281. doi:10.1016/S0008-6215(00)83860-4.
  4. 1 2 3 4 5 T. Yamazaki & K. Matsuda (1977). "Steric and electrostatic effects on the elimination of 2- and 3-sulphonyloxy-groups from methyl 4,6-O–benzylidenehexopyranosides". Journal of the Chemical Society, Perkin Transactions 1. 1 (18): 1981–1984. doi:10.1039/p19770001981.
  5. L. Baptistella; A. Neto; et al. (1993). "An improved synthesis of 2,3- and 3,4-unsaturated pyranosides: The use of microwave energy". Tetrahedron Letters. 34 (52): 8407–8410. doi:10.1016/S0040-4039(00)61345-X.