Titanium butoxide

Last updated
Titanium butoxide
Structural formula of titanium tetrabutoxide.svg
gas phase structure
IUPAC name
titanium(4+) butan-1-olate
Other names
Titanium(IV) butoxide, titanium n-butoxide, titanium tetrakis(butoxide), butyl titanate, tetrabutoxy titanium, titanium tetrabutoxide, tetrabutoxytitanium, tetrabutyltitanate, tetrabutyl orthotitanate, titanium tetrabutanolate, [1] [2] TYZOR TBT
3D model (JSmol)
ECHA InfoCard 100.024.552 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 227-006-8
PubChem CID
UN number 2920
  • InChI=1S/4C4H9O.Ti/c4*1-2-3-4-5;/h4*2-4H2,1H3;/q4*-1;+4
  • CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-].[Ti+4]
Molar mass 340.32164
Odor weak alcohol-like [1]
Density 0.998 g/cm3 [1]
Melting point -55 °C [1]
Boiling point 312 °C [1]
decomposes [1]
Solubility most organic solvents except ketones [1]
1.486 [1]
711 J/(mol·K) [2]
-1670 kJ/mol [2]
Lethal dose or concentration (LD, LC):
3122 mg/kg (rat, oral) and 180 mg/kg (mouse, intravenal). [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Titanium butoxide is a metal alkoxide with the formula Ti(OBu)4 (Bu = –CH2CH2CH2CH3). It is a colorless odorless liquid, although aged samples are yellowish with a weak alcohol-like odor. It is soluble in many organic solvents. [1] [3] Decomposition in water is not hazardous, and therefore titanium butoxide is often used as a liquid source of titanium dioxide, which allows deposition of TiO2 coatings of various shapes and sizes down to the nanoscale. [4] [5]


Titanium butoxide is a corrosive, flammable liquid incompatible with oxidizing materials. It reacts violently with sulfuric and nitric acids, inorganic hydroxides and peroxides, bases, amines, amides, isocyanates and boranes. It is irritating to skin and eyes, and causes nausea and vomiting if swallowed. LD50 is 3122 mg/kg (rat, oral) and 180 mg/kg (mouse, intravenal); flash point is 77 °C. When heated it emits irritating fumes, which form explosive mixtures with air at concentrations above 2 vol%.

Structure and synthesis

Structure of a typical titanium alkoxide, e.g. titanium ethoxide (organic substituents removed for clarity). Titanium 4 Ethoxide WIKI.png
Structure of a typical titanium alkoxide, e.g. titanium ethoxide (organic substituents removed for clarity).

Like most titanium alkoxides (exception: titanium isopropoxide), Ti(OBu)4 is not a monomer but exists as a cluster (see titanium ethoxide). Nonetheless it is often depicted as a simple monomer.[ citation needed ]

It is produced by treating titanium tetrachloride with butanol:

TiCl4 + 4 HOBu → Ti(OBu)4 + 4 HCl

The reaction requires base to proceed to completion.


Like other titanium alkoxides, titanium butoxide exchanges alkoxide groups:

Ti(OBu)4 + HOR → Ti(OBu)3(OR) + HOBu
Ti(OBu)3(OR) + HOR → Ti(OBu)2(OR)2 + HOBu

etc. For this reason, titanium butoxide is not compatible with alcohol solvents.

Analogous to the alkoxide exchange, titanium butoxide hydrolyzes readily. The reaction details are complex, but can be summarized with this balanced equation.

Ti(OBu)4 + 2 H2O → TiO2 + 4 HOBu

Pyrolysis also affords the dioxide:

Ti(OBu)4 → TiO2 + 2 Bu2O

Titanium butoxide reacts with alkylcyclosiloxanes. With ocatamethylcyclotetrasiloxane it produces dibutoxydimethylsilane, 1,5-dibutoxyhexamethyltrisiloxane, 1,7-dibutoxyoctamethyltetrasiloxane, 1,3-dibutoxytetramethyldisiloxane and polymers. With hexamethylcyclotrisiloxane it also produces dibutoxydimethylsilane. [6]

leftSEM (top) and TEM (bottom) images of chiral TiO2 nanofibers produced by depositing titanium butoxide on carbon nanofibers. Carbon was removed by heating in air. Chiral TiO2 nanofibers 2.jpg
leftSEM (top) and TEM (bottom) images of chiral TiO2 nanofibers produced by depositing titanium butoxide on carbon nanofibers. Carbon was removed by heating in air.


LD50 is 3122 mg/kg (rat, oral) and 180 mg/kg (mouse, intravenal).[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Zirconium</span> Chemical element, symbol Zr and atomic number 40

Zirconium is a chemical element; it has symbol Zr and atomic number 40. The name zirconium is derived from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian zargun. It is a lustrous, grey-white, strong transition metal that closely resembles hafnium and, to a lesser extent, titanium. Zirconium is mainly used as a refractory and opacifier, although small amounts are used as an alloying agent for its strong resistance to corrosion. Zirconium forms a variety of inorganic and organometallic compounds such as zirconium dioxide and zirconocene dichloride, respectively. Five isotopes occur naturally, four of which are stable. Zirconium compounds have no known biological role.

<span class="mw-page-title-main">Titanium dioxide</span> Chemical compound often used as a white pigment, Including in food and paints.

Titanium dioxide, also known as titanium(IV) oxide or titania, is the inorganic compound with the chemical formula TiO
. When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. It is a white solid that is insoluble in water, although mineral forms can appear black. As a pigment, it has a wide range of applications, including paint, sunscreen, and food coloring. When used as a food coloring, it has E number E171. World production in 2014 exceeded 9 million tonnes. It has been estimated that titanium dioxide is used in two-thirds of all pigments, and pigments based on the oxide have been valued at a price of $13.2 billion.

<span class="mw-page-title-main">Ethylene oxide</span> Cyclic compound (C2H4O)

Ethylene oxide is an organic compound with the formula C2H4O. It is a cyclic ether and the simplest epoxide: a three-membered ring consisting of one oxygen atom and two carbon atoms. Ethylene oxide is a colorless and flammable gas with a faintly sweet odor. Because it is a strained ring, ethylene oxide easily participates in a number of addition reactions that result in ring-opening. Ethylene oxide is isomeric with acetaldehyde and with vinyl alcohol. Ethylene oxide is industrially produced by oxidation of ethylene in the presence of a silver catalyst.

<span class="mw-page-title-main">Transition metal alkoxide complex</span> Conjugate base of an alcohol

A transition metal alkoxide complex is a kind of coordination complex containing one or more alkoxide ligands, written as RO, where R is the organic substituent. Metal alkoxides are used for coatings and as catalysts.

<span class="mw-page-title-main">Acrylic acid</span> Chemical compound

Acrylic acid (IUPAC: propenoic acid) is an organic compound with the formula CH2=CHCOOH. It is the simplest unsaturated carboxylic acid, consisting of a vinyl group connected directly to a carboxylic acid terminus. This colorless liquid has a characteristic acrid or tart smell. It is miscible with water, alcohols, ethers, and chloroform. More than a million tons are produced annually.

<span class="mw-page-title-main">Titanium tetrachloride</span> Inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as “tickle” or “tickle 4”, as a phonetic representation of the symbols of its molecular formula.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Terephthalic acid</span> Chemical compound

Terephthalic acid is an organic compound with formula C6H4(CO2H)2. This white solid is a commodity chemical, used principally as a precursor to the polyester PET, used to make clothing and plastic bottles. Several million tons are produced annually. The common name is derived from the turpentine-producing tree Pistacia terebinthus and phthalic acid.

In materials science, the sol–gel process is a method for producing solid materials from small molecules. The method is used for the fabrication of metal oxides, especially the oxides of silicon (Si) and titanium (Ti). The process involves conversion of monomers into a colloidal solution (sol) that acts as the precursor for an integrated network of either discrete particles or network polymers. Typical precursors are metal alkoxides. Sol–gel process is used to produce ceramic nanoparticles.

<span class="mw-page-title-main">Titanium isopropoxide</span> Chemical compound

Titanium isopropoxide, also commonly referred to as titanium tetraisopropoxide or TTIP, is a chemical compound with the formula Ti{OCH(CH3)2}4. This alkoxide of titanium(IV) is used in organic synthesis and materials science. It is a diamagnetic tetrahedral molecule. Titanium isopropoxide is a component of the Sharpless epoxidation, a method for the synthesis of chiral epoxides.

Solution polymerization is a method of industrial polymerization. In this procedure, a monomer is dissolved in a non-reactive solvent that contains a catalyst or initiator.

<span class="mw-page-title-main">Tetraethyl orthosilicate</span> Chemical compound

Tetraethyl orthosilicate, formally named tetraethoxysilane (TEOS), ethyl silicate is the organic chemical compound with the formula Si(OC2H5)4. TEOS is a colorless liquid. It degrades in water. TEOS is the ethyl ester of orthosilicic acid, Si(OH)4. It is the most prevalent alkoxide of silicon.

<span class="mw-page-title-main">Tetramethylammonium chloride</span> Chemical compound

Tetramethylammonium chloride is one of the simplest quaternary ammonium salts, with four methyl groups tetrahedrally attached to the central N. The chemical formula (CH3)4N+Cl is often abbreviated further as Me4N+Cl. It is a hygroscopic colourless solid that is soluble in water and polar organic solvents. Tetramethylammonium chloride is a major industrial chemical, being used widely as a chemical reagent and also as a low-residue bactericide in such processes as hydrofracking. In the laboratory, it has fewer synthetic chemical applications than quaternary ammonium salts containing longer N-alkyl substituents, which are used extensively as phase-transfer catalysts.

<span class="mw-page-title-main">Titanium ethoxide</span> Chemical compound

Titanium ethoxide is a chemical compound with the formula Ti4(OCH2CH3)16. It is a commercially available colorless liquid that is soluble in organic solvents but hydrolyzes readily. Its structure is more complex than suggested by its empirical formula. Like other alkoxides of titanium(IV) and zirconium(IV), it finds used in organic synthesis and materials science.

<span class="mw-page-title-main">Nickel(II) titanate</span> Chemical compound

Nickel(II) titanate is an inorganic compound with the chemical formula NiTiO3 nickel(II) titanate, also known as nickel titanium oxide, is a coordination compound between nickel(II), titanium(IV) and oxide ions. It has the appearance of a yellow powder. There are several methods of synthesis for nickel(II) titanate. The first method involves nickel(II) titanate's melting temperature of over 500 °C at which its precursor decomposes to give nickel(II) titanate as a residue. Nickel(II) titanate has been used as a catalyst for toluene oxidation. The second method involved using enthalpy and entropy on the reaction to synthesize nickel(II) titanate through its phase transition.

In polymer science, dispersion polymerization is a heterogeneous polymerization process carried out in the presence of a polymeric stabilizer in the reaction medium. Dispersion polymerization is a type of precipitation polymerization, meaning the solvent selected as the reaction medium is a good solvent for the monomer and the initiator, but is a non-solvent for the polymer. As the polymerization reaction proceeds, particles of polymer form, creating a non-homogeneous solution. In dispersion polymerization these particles are the locus of polymerization, with monomer being added to the particle throughout the reaction. In this sense, the mechanism for polymer formation and growth has features similar to that of emulsion polymerization. With typical precipitation polymerization, the continuous phase is the main locus of polymerization, which is the main difference between precipitation and dispersion.

<span class="mw-page-title-main">Titanate nanosheet</span>

Titanate (IV) nanosheets (TiNSs) have a 2D structure where TiO6 octahedra are edge-linked in a lepidocrocite-type 2D lattice with chemical formula HxTi2x/4x/4O4 ⦁ H2O (x~0.7; ☐, vacancy). Titanate nanosheets may be regarded as sheets with molecular thickness and infinite planar dimensions. TiNSs are typically formed via liquid-phase exfoliation of protonic titanate. In inorganic layered materials, individual layers are bound to each other by van der Waals interactions if they are neutral, and additional Coulomb interactions if they are composed of oppositely charged layers. Through liquid-phase exfoliation, these individual sheets of layered materials can be efficiently separated using an appropriate solvent, creating single-layer colloidal suspensions. Solvents must have an interaction energy with the layers that is greater than the interaction energy between two layers. In situ X-Ray diffraction data indicates that TiNSs can be treated as macromolecules with a sufficient amount of solvent in between layers so that they behave as individual sheets.

<span class="mw-page-title-main">Titanium dioxide nanoparticle</span>

Titanium dioxide nanoparticles, also called ultrafine titanium dioxide or nanocrystalline titanium dioxide or microcrystalline titanium dioxide, are particles of titanium dioxide with diameters less than 100 nm. Ultrafine TiO2 is used in sunscreens due to its ability to block ultraviolet radiation while remaining transparent on the skin. It is in rutile crystal structure and coated with silica or/and alumina to prevent photocatalytic phenomena. The health risks of ultrafine TiO2 from dermal exposure on intact skin are considered extremely low, and it is considered safer than other substances used for ultraviolet protection.

<span class="mw-page-title-main">Ethyl methacrylate</span> Organic compound

Ethyl methacrylate is the organic compound with the formula C2H5O2CC(CH3)=CH2. A colorless liquid, it is a common monomer for the preparation of acrylate polymers. It is typically polymerized under free-radical conditions.

The +4 oxidation state dominates titanium chemistry, but compounds in the +3 oxidation state are also numerous. Commonly, titanium adopts an octahedral coordination geometry in its complexes, but tetrahedral TiCl4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of covalent bonding.


  1. 1 2 3 4 5 6 7 8 9 10 Butyl titanate. pubchem.ncbi.nlm.nih.gov
  2. 1 2 3 Tetrabutyl titanate. nist.gov
  3. Pohanish, Richard P.; Greene, Stanley A. (2009). Wiley Guide to Chemical Incompatibilities. John Wiley & Sons. p. 1010. ISBN   978-0-470-52330-8.
  4. 1 2 Wang, Cui (2015). "Hard-templating of chiral TiO2 nanofibres with electron transition-based optical activity". Science and Technology of Advanced Materials. 16 (5): 054206. Bibcode:2015STAdM..16e4206W. doi:10.1088/1468-6996/16/5/054206. PMC   5070021 . PMID   27877835.
  5. Wu, Limin; Baghdachi, Jamil (2015). Functional Polymer Coatings: Principles, Methods, and Applications. Wiley. p. 10. ISBN   978-1-118-88303-7.
  6. K. A. Andrianov; Sh. V. Pichkhadze; V. V. Komarova; Ts. N. Vardosanidze (1962). "Reactions of organocyclosiloxanes with tetrabutyl orthotitanate". Bulletin of the Academy of Sciences of the USSR Division of Chemical Science. 11 (5): 776–779. doi:10.1007/BF00905301. ISSN   0568-5230.