Tohru Fukuyama

Last updated

Tohru Fukuyama
Tohru Fukuyama 2016.jpg
Tohru Fukuyama
Born (1948-08-09) August 9, 1948 (age 75)
Alma mater Nagoya University
Harvard University
Known for Fukuyama coupling
Scientific career
Institutions Harvard University
Rice University
University of Tokyo
Thesis The total synthesis of gliotoxin  (1977)
Doctoral advisor Yoshito Kishi

Tohru Fukuyama (福山 透, Fukuyama Tōru, born 9 August 1948) is a Japanese organic chemist and Professor of Chemistry at University of Tokyo in Japan. He discovered the Fukuyama coupling in 1998.

Contents

Biography

Fukuyama studied chemistry at Nagoya University with degrees Bachelor's (1971) and Master's (1973) degrees. As a graduate student, he then worked at Harvard University, where he received his doctorate in 1977 as an academic student of Yoshito Kishi. Until 1978, he continued his research as a postdoc in the Department of Chemistry of Harvard University and then moved to Rice University as an assistant professor, where in 1988 he obtained the rank of a chair holder. In 1995, he accepted a professorship in Pharmaceutical Sciences from the University of Tokyo, Japan. Since 2013, Fukuyama has been working as a professor at the Nagoya University - more precisely: Designated Professor of Pharmaceutical Sciences.

The 2015 Nobel Prize in Physiology or Medicine winner Satoshi Ōmura is his old friend.

Achievements

Selected publications

Related Research Articles

The Sonogashira reaction is a cross-coupling reaction used in organic synthesis to form carbon–carbon bonds. It employs a palladium catalyst as well as copper co-catalyst to form a carbon–carbon bond between a terminal alkyne and an aryl or vinyl halide.

Organopalladium chemistry is a branch of organometallic chemistry that deals with organic palladium compounds and their reactions. Palladium is often used as a catalyst in the reduction of alkenes and alkynes with hydrogen. This process involves the formation of a palladium-carbon covalent bond. Palladium is also prominent in carbon-carbon coupling reactions, as demonstrated in tandem reactions.

<span class="mw-page-title-main">Curtius rearrangement</span> Chemical reaction

The Curtius rearrangement, first defined by Theodor Curtius in 1885, is the thermal decomposition of an acyl azide to an isocyanate with loss of nitrogen gas. The isocyanate then undergoes attack by a variety of nucleophiles such as water, alcohols and amines, to yield a primary amine, carbamate or urea derivative respectively. Several reviews have been published.

<span class="mw-page-title-main">Isatin</span> Chemical compound

Isatin, also known as tribulin, is an organic compound derived from indole with formula C8H5NO2. The compound was first obtained by Otto Linné Erdman and Auguste Laurent in 1840 as a product from the oxidation of indigo dye by nitric acid and chromic acids.

<span class="mw-page-title-main">Petasis reaction</span>

The Petasis reaction is the multi-component reaction of an amine, a carbonyl, and a vinyl- or aryl-boronic acid to form substituted amines.

<span class="mw-page-title-main">Organozinc chemistry</span>

Organozinc chemistry is the study of the physical properties, synthesis, and reactions of organozinc compounds, which are organometallic compounds that contain carbon (C) to zinc (Zn) chemical bonds.

In organic chemistry, the Buchwald–Hartwig amination is a chemical reaction for the synthesis of carbon–nitrogen bonds via the palladium-catalyzed coupling reactions of amines with aryl halides. Although Pd-catalyzed C-N couplings were reported as early as 1983, Stephen L. Buchwald and John F. Hartwig have been credited, whose publications between 1994 and the late 2000s established the scope of the transformation. The reaction's synthetic utility stems primarily from the shortcomings of typical methods for the synthesis of aromatic C−N bonds, with most methods suffering from limited substrate scope and functional group tolerance. The development of the Buchwald–Hartwig reaction allowed for the facile synthesis of aryl amines, replacing to an extent harsher methods while significantly expanding the repertoire of possible C−N bond formation.

<span class="mw-page-title-main">Zincke aldehyde</span>

Zincke aldehydes, or 5-aminopenta-2,4-dienals, are the product of the reaction of a pyridinium salt with two equivalents of any secondary amine, followed by basic hydrolysis. Using secondary amines the Zincke reaction takes on a different shape forming Zincke aldehydes in which the pyridine ring is ring-opened with the terminal iminium group hydrolyzed to an aldehyde. The use of the dinitrophenyl group for pyridine activation was first reported by Theodor Zincke. The use of cyanogen bromide for pyridine activation was independently reported by W. König:

In organic chemistry, the Ei mechanism, also known as a thermal syn elimination or a pericyclic syn elimination, is a special type of elimination reaction in which two vicinal (adjacent) substituents on an alkane framework leave simultaneously via a cyclic transition state to form an alkene in a syn elimination. This type of elimination is unique because it is thermally activated and does not require additional reagents, unlike regular eliminations, which require an acid or base, or would in many cases involve charged intermediates. This reaction mechanism is often found in pyrolysis.

<span class="mw-page-title-main">Spirotryprostatin B</span> Chemical compound

Spirotryprostatin B is an indolic alkaloid found in the Aspergillus fumigatus fungus that belongs to a class of naturally occurring 2,5-diketopiperazines. Spirotryprostatin B and several other indolic alkaloids have been found to have anti-mitotic properties, and as such they have become of great interest as anti-cancer drugs. Because of this, the total syntheses of these compounds is a major pursuit of organic chemists, and a number of different syntheses have been published in the chemical literature.

<span class="mw-page-title-main">Fukuyama indole synthesis</span>

The Fukuyama indole synthesis is a versatile tin mediated chemical reaction that results in the formation of 2,3-disubstituted indoles. A practical one-pot reaction that can be useful for the creation of disubstituted indoles. Most commonly tributyltin hydride is utilized as the reducing agent, with azobisisobutyronitrile (AIBN) as a radical initiator. Triethylborane can also be used as a radical initiator. The reaction can begin with either an ortho-isocyanostyrene or a 2-alkenylthioanilide derivative, both forming the indole through Radical cyclization via an α-stannoimidoyl radical. The R group can be a range of both basic and acidic sensitive functional groups such as esters, THP ethers, and β-lactams. In addition the reaction is not stereospecific, in that both the cis and trans isoform can be used to obtain the desired product.

The Fukuyama coupling is a coupling reaction taking place between a thioester and an organozinc halide in the presence of a palladium catalyst. The reaction product is a ketone. This reaction was discovered by Tohru Fukuyama et al. in 1998.

<span class="mw-page-title-main">Aspidophytine</span> Chemical compound

Aspidophytine is an indole alkaloid that has attracted a lot of attention from synthetic chemists. An extract of the cockroach plant, aspidophytine is an insecticidal substance particularly effective against cockroaches. It is one of the two components of the dimer haplophytine.

<span class="mw-page-title-main">Indole</span> Chemical compound

Indole is an aromatic, heterocyclic, organic compound with the formula C8H7N. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indole is widely distributed in the natural environment and can be produced by a variety of bacteria. As an intercellular signal molecule, indole regulates various aspects of bacterial physiology, including spore formation, plasmid stability, resistance to drugs, biofilm formation, and virulence. The amino acid tryptophan is an indole derivative and the precursor of the neurotransmitter serotonin.

The Fukuyama reduction is an organic reaction and an organic reduction in which a thioester is reduced to an aldehyde by a silyl hydride in presence of a catalytic amount of palladium. This reaction was invented in 1990 by Tohru Fukuyama. In the original scope of the reaction the silyl hydride was triethylsilane and the catalyst palladium on carbon:

<span class="mw-page-title-main">Strychnine total synthesis</span>

Strychnine total synthesis in chemistry describes the total synthesis of the complex biomolecule strychnine. The first reported method by the group of Robert Burns Woodward in 1954 is considered a classic in this research field.

The Saegusa–Ito oxidation is a chemical reaction used in organic chemistry. It was discovered in 1978 by Takeo Saegusa and Yoshihiko Ito as a method to introduce α-β unsaturation in carbonyl compounds. The reaction as originally reported involved formation of a silyl enol ether followed by treatment with palladium(II) acetate and benzoquinone to yield the corresponding enone. The original publication noted its utility for regeneration of unsaturation following 1,4-addition with nucleophiles such as organocuprates.

Akira Hosomi was a Japanese chemist. He was professor emeritus at Tsukuba University, a fellow of the Chemical Society of Japan, a visiting professor at Chuo University, and an academic advisor at Kyushu University.

<span class="mw-page-title-main">John P. Wolfe</span>

John Perry Wolfe is an American chemist and a professor of chemistry at the University of Michigan. He is best known for palladium-catalyzed C-C and C-N bond formation reactions. He was also one of the key scientists in the development of Buchwald ligands, one of which is appropriately named "JohnPhos" after him. Wolfe has taught at the University of Michigan since 2002.

Igor Guerrero Larrosa is a Spanish chemist and a professor in the Department of Chemistry at The University of Manchester. His research in general is based on organic chemistry and inorganic chemistry, specifically on the areas of inorganic catalysis and organic synthesis including the application to C-H and decarboxylative activation.

References