Last updated
Clinical data
ATC code
  • none
Legal status
Legal status
  • Investigational
  • 4-{[(E)-(3-Chloro-5-methyl-6-oxocyclohexa-2,4-dien-1-ylidene)(4-chlorophenyl)methyl]amino}butanamide
CAS Number
PubChem CID
Chemical and physical data
Formula C18H18Cl2N2O2
Molar mass 365.25 g·mol−1
3D model (JSmol)
  • Cc1cc(cc(c1O)/C(=N/CCCC(=O)N)/c2ccc(cc2)Cl)Cl
  • InChI=1S/C18H18Cl2N2O2/c1-11-9-14(20)10-15(18(11)24)17(22-8-2-3-16(21)23)12-4-6-13(19)7-5-12/h4-7,9-10,24H,2-3,8H2,1H3,(H2,21,23)/b22-17+

Tolgabide (INN; development code SL-81.0142) is a drug which was patented by Synthélabo as an anticonvulsant but was never marketed. [1] It is an analogue of progabide and acts similarly to it as a prodrug of GABA, and therefore as an indirect agonist of the GABA receptors. [1] [2]

See also

Related Research Articles

γ-Aminobutyric acid Main inhibitory neurotransmitter in the mammalian brain

γ-Aminobutyric acid, or GABA, is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system.

<span class="mw-page-title-main">GABA receptor</span> Receptors that respond to gamma-aminobutyric acid

The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief inhibitory compound in the mature vertebrate central nervous system. There are two classes of GABA receptors: GABAA and GABAB. GABAA receptors are ligand-gated ion channels ; whereas GABAB receptors are G protein-coupled receptors, also called metabotropic receptors.

GABA<sub>A</sub> receptor Ionotropic receptor and ligand-gated ion channel

The GABAA receptor (GABAAR) is an ionotropic receptor and ligand-gated ion channel. Its endogenous ligand is γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Upon opening, the GABAA receptor on the postsynaptic cell is selectively permeable to chloride ions (Cl) and, to a lesser extent, bicarbonate ions (HCO3). Depending on the membrane potential and the ionic concentration difference, this can result in ionic fluxes across the pore. If the membrane potential is higher than the equilibrium potential (also known as the reversal potential) for chloride ions, when the receptor is activated Cl will flow into the cell. This causes an inhibitory effect on neurotransmission by diminishing the chance of a successful action potential occurring at the postsynaptic cell. The reversal potential of the GABAA-mediated inhibitory postsynaptic potential (IPSP) in normal solution is −70 mV, contrasting the GABAB IPSP (-100 mV).

In molecular biology and physiology, something is GABAergic or GABAnergic if it pertains to or affects the neurotransmitter GABA. For example, a synapse is GABAergic if it uses GABA as its neurotransmitter, and a GABAergic neuron produces GABA. A substance is GABAergic if it produces its effects via interactions with the GABA system, such as by stimulating or blocking neurotransmission.

<span class="mw-page-title-main">Progabide</span> Pharmaceutical drug

Progabide is an analogue and prodrug of γ-aminobutyric acid (GABA) used in the treatment of epilepsy. Via conversion into GABA, progabide behaves as an agonist of the GABAA, GABAB, and GABAA-ρ receptors.

<span class="mw-page-title-main">Phenibut</span> Chemical compound

Phenibut, sold under the brand names Anvifen, Fenibut, and Noofen among others, is a central nervous system depressant with anxiolytic effects, and is used to treat anxiety, insomnia, and for a variety of other indications. It is usually taken by mouth as a tablet, but may be given intravenously.

<span class="mw-page-title-main">Indiplon</span> Chemical compound

Indiplon is a nonbenzodiazepine, hypnotic sedative that was developed in two formulations—an immediate-release formulation for sleep onset, and a modified-release version for sleep maintenance.

<span class="mw-page-title-main">Etifoxine</span> Chemical compound

Etifoxine is an anxiolytic and anticonvulsant drug developed by Hoechst in the 1960s. It is sold in approximately 40 countries for anxiety disorders, without the sedation and ataxia associated with benzodiazepine drugs. It has similar anxiolytic effects to benzodiazepine drugs, but is structurally distinct, although it has structural elements in common with them. Studies suggest is as effective as lorazepam as an anxiolytic, but has fewer side effects. Etifoxine is not approved by the U.S. Food and Drug Administration. The European Medicines Agency (EMA) started a review procedure regarding the effectiveness and safety of etifoxine following a French study that compares etifoxine's effectiveness to placebo and lorazepam. In January 2022, the EMA "finalized its review of Stresam and concluded that the medicine can continue to be used for the treatment of anxiety disorders, but it must not be used in patients who previously had severe skin reactions or severe liver problems after taking etifoxine."

<span class="mw-page-title-main">GABA receptor agonist</span>

A GABA receptor agonist is a drug that is an agonist for one or more of the GABA receptors, producing typically sedative effects, and may also cause other effects such as anxiolytic, anticonvulsant, and muscle relaxant effects. There are three receptors of the gamma-aminobutyric acid. The two receptors GABA-α and GABA-ρ are ion channels that are permeable to chloride ions which reduces neuronal excitability. The GABA-β receptor belongs to the class of G-Protein coupled receptors that inhibit adenylyl cyclase, therefore leading to decreased cyclic adenosine monophosphate (cAMP). GABA-α and GABA-ρ receptors produce sedative and hypnotic effects and have anti-convulsion properties. GABA-β receptors also produce sedative effects. Furthermore, they lead to changes in gene transcription.

<i>gamma</i>-Amino-<i>beta</i>-hydroxybutyric acid

γ-Amino-β-hydroxybutyric acid (GABOB), also known as β-hydroxy-γ-aminobutyric acid (β-hydroxy-GABA), and sold under the brand name Gamibetal among others, is an anticonvulsant which is used for the treatment of epilepsy in Europe, Japan, and Mexico. It is a GABA analogue, or an analogue of the neurotransmitter γ-aminobutyric acid (GABA), and has been found to be an endogenous metabolite of GABA.

<span class="mw-page-title-main">4-aminobutyrate transaminase</span> Class of enzymes

In enzymology, 4-aminobutyrate transaminase, also called GABA transaminase or 4-aminobutyrate aminotransferase, or GABA-T, is an enzyme that catalyzes the chemical reaction:

<span class="mw-page-title-main">Homotaurine</span> Chemical compound

Homotaurine is a natural sulfonic acid found in seaweed. It is analogous to taurine, but with an extra carbon in its chain. It has GABAergic activity, apparently by mimicking GABA, which it resembles.

<span class="mw-page-title-main">Fengabine</span> Chemical compound

Fengabine (SL-79,229) is a drug which was investigated as an antidepressant but was never marketed. Its mechanism of action is unknown, but its antidepressant effects are reversed by GABAA receptor antagonists like bicuculline and it has hence been labeled as GABAergic; however, it does not actually bind to GABA receptors, nor does it inhibit GABA-T. In clinical trials, fengabine's efficacy was comparable to that of the tricyclic antidepressants, but with a more rapid onset of action and much less side effects. Notably, fengabine lacks any sedative effects.

<span class="mw-page-title-main">Pivagabine</span> Chemical compound

Pivagabine, also known as N-pivaloyl-γ-aminobutyric acid or N-pivaloyl-GABA, is an antidepressant and anxiolytic drug which was introduced in Italy in 1997 for the treatment of depressive and maladaptive syndromes. But it was discontinued in Italy. Originally believed to function as a prodrug to GABA, pivagabine is now believed to act somehow via modulation of corticotropin-releasing factor (CRF).

<span class="mw-page-title-main">Pentylenetetrazol</span> Chemical compound

Pentylenetetrazol, also known as pentylenetetrazole, leptazol, metrazol, pentetrazol (INN), pentamethylenetetrazol, Corazol, Cardiazol, Deumacard, or PTZ, is a drug formerly used as a circulatory and respiratory stimulant. High doses cause convulsions, as discovered by Hungarian-American neurologist and psychiatrist Ladislas J. Meduna in 1934. It has been used in convulsive therapy, and was found to be effective—primarily for depression—but side effects such as uncontrolled seizures were difficult to avoid. In 1939, pentylenetetrazol was replaced by electroconvulsive therapy, which is easier to administer, as the preferred method for inducing seizures in England's mental hospitals. In the US, its approval by the Food and Drug Administration was revoked in 1982. It is used in Italy as a cardio-respiratory stimulant in combination with codeine in a cough suppressant drug.

Iomazenil Chemical compound

Iomazenil is an antagonist and partial inverse agonist of benzodiazepine and a potential treatment for alcohol use disorder. The compound was introduced in 1989 by pharmaceutical company Hoffmann-La Roche as an Iodine-123-labelled SPECT tracer for imaging benzodiazepine receptors in the brain. Iomazenil is an analogue of flumazenil (Ro15-1788).

<span class="mw-page-title-main">CI-966</span> Chemical compound

CI-966 (developmental code name) is a central nervous system depressant acting as a GABA reuptake inhibitor, specifically a highly potent and selective blocker of the GABA transporter 1 (GAT-1) (IC50 = 0.26 μM), and hence indirect and non-selective GABA receptor full agonist. It was investigated as a potential anticonvulsant, anxiolytic, and neuroprotective therapeutic but was discontinued during clinical development due to the incidence of severe adverse effects at higher doses and hence was never marketed.

<span class="mw-page-title-main">Afoxolaner</span> Chemical compound used as an insecticide

Afoxolaner (INN) is an insecticide and acaricide that belongs to the isoxazoline chemical compound group.

<span class="mw-page-title-main">Posovolone</span> Chemical compound

Posovolone is a synthetic neurosteroid which was under development as a sedative/hypnotic medication for the treatment of insomnia. It is orally active and acts as a GABAA receptor positive allosteric modulator. In animals, posovolone shows anticonvulsant, anxiolytic-like, ataxic, and sleep-promoting effects and appeared to produce effects similar to those of pregnanolone. Development of the agent was started by 1999 and appears to have been discontinued by 2007. In 2021, an INN was registered for posovolone with the descriptor of "antidepressant". Posovolone was originally developed by Purdue Pharma.


  1. 1 2 Triggle DJ (1996). Dictionary of Pharmacological Agents. Boca Raton: Chapman & Hall/CRC. ISBN   0-412-46630-9.
  2. "The use of common stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances" (PDF). 2002.[ dead link ]