Tololo 1247-232

Last updated
Tololo 1247-232 (T1247)
13027 02 WFC UVIS (combined) TOLOLO-1247-232.png
An image from the HST WFC of T1247, which was observed in 2013 as part of Program 13027. This is a combination image (by stacking) made by William Keel (University of Alabama) in 2015. The images used are taken from Program 13027.
Observation data (J2000 epoch)
Constellation Hydra
Right ascension 12h 50m 18.80s
Declination −23° 33 57.0
Redshift 0.0480
Distance 652 million
Apparent magnitude  (V)−21
Type Starburst galaxy
Notable featuresLyman Continuum leaker
Other designations
Tol 1247, EC 12476-2317, To 1247,
PGC 83589

Tololo 1247-232 (Tol 1247 or T1247) is a small galaxy at a distance of 652 million light-years (200 million parsecs ) (redshift z=0.0480). [1] It is situated in the southern equatorial constellation of Hydra. Visually, Tol 1247 appears to be an irregular or possibly a barred spiral galaxy. [2] Tol 1247 is named after the surveys that were carried at the Cerro Tololo Inter-American Observatory (CTIO), the first of which was in 1976. [3] It is one of nine galaxies in the local universe known to emit Lyman continuum photons. [4] [5] [6]



The Victor M. Blanco Telescope at CTIO 4m-Victor M. Blanco Telescope.jpg
The Victor M. Blanco Telescope at CTIO

Tol 1247-232 (T1247) was first described in 1985. [7] It was observed in the infrared using the Cerro Tololo Inter-American Observatory (CTIO) 4m telescope, as part of a study of regions of intense star formation. [7]

Six years later, T1247 was identified as an HII galaxy in the paper 'A spectrophotometric catalogue of HII galaxies', a study of 425 emission-line galaxies. [8] T1247 has also been classified as a starburst galaxy, a blue compact dwarf and a Wolf–Rayet galaxy. [2]

Lyman continuum leakage

T1247 is one of nine galaxies in the local universe that have been identified as leaking Lyman continuum (LyC) photons. [1] [4] [9] The first published detection of Lyman continuum photons from T1247 was made in 2013 by Leitet et al. using data from the Far Ultraviolet Spectroscopic Explorer (FUSE). It was the second-known LyC-leaking source in the local universe. [1]

An image from the HST WFC (using the UVIS channel) taken in 2013 as part of Program 13027 Tololo-1247-232 v2.png
An image from the HST WFC (using the UVIS channel) taken in 2013 as part of Program 13027

LyC leakage is crucial to the process known as reionization which is believed to have occurred within the first 10% of the age of the universe. [10] The cosmic reionization is, after recombination, the second major phase-change of hydrogen in the universe. [2] The epoch of reionization began when the first sources appeared which produced photons capable of ionizing the surrounding medium, and ended when all of the intergalactic medium (IGM) was ionized. [2] LyC photons are responsible for this process. However, to date it is unclear which physical mechanisms effectively produce large amounts of LyC photons, such that the reionization of the universe could be powered. Two processes are currently discussed and under evaluation: active galactic nuclei (AGN) and starbursts in dwarf galaxies. AGNs are known to produce large amounts of LyC emission, but in the early universe the number of AGNs is unknown, and often believed to be too small to power the reionization. On the other side, dwarf starbursts are known to be numerous in the early universe, but their LyC emission is unknown. For that reason local galaxies such as TOL1247 are studied in detail, in order to understand physical processes that produce escaping LyC photons. In TOL1247 it was found that bulk of the LyC photons emerges from two massive stellar clusters located in the central region of the galaxy. [11] The escape is supported by the structure of the interstellar medium of the galaxy, which appears to be clumpy and highly ionized. Although Puschnig et al. (2017) could verify that LyC indeed escapes from TOL1247, their new spectroscopic data obtained with the Cosmic Origins Spectrograph of the Hubble Space Telescope indicates a relatively low number of escaping LyC photons (only 1.5% escape fraction). [11] Thus, if galaxies in the early universe were similar to TOL1247, they would indeed contribute to reionization, but not sufficiently to explain the second major phase-change in the universe.

See also

Related Research Articles

Galaxy Gravitationally bound astronomical structure

A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas, dust, and dark matter. The word is derived from the Greek galaxias (γαλαξίας), literally "milky", a reference to the Milky Way. Galaxies range in size from dwarfs with just a few hundred million stars to giants with one hundred trillion stars, each orbiting its galaxy's center of mass.

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not produced by stars. Such excess non-stellar emission has been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an "active galaxy". The non-stellar radiation from an AGN is theorized to result from the accretion of matter by a supermassive black hole at the center of its host galaxy.

Starburst galaxy Galaxy undergoing an exceptionally high rate of star formation

A starburst galaxy is a galaxy undergoing an exceptionally high rate of star formation, as compared to the long-term average rate of star formation in the galaxy or the star formation rate observed in most other galaxies. For example, the star formation rate of the Milky Way galaxy is approximately 3 M/yr; however, starburst galaxies can experience star formation rates that are more than a factor of 33 times greater. In a starburst galaxy, the rate of star formation is so large that the galaxy will consume all of its gas reservoir, from which the stars are forming, on a timescale much shorter than the age of the galaxy. As such, the starburst nature of a galaxy is a phase, and one that typically occupies a brief period of a galaxy's evolution. The majority of starburst galaxies are in the midst of a merger or close encounter with another galaxy. Starburst galaxies include M82, NGC 4038/NGC 4039, and IC 10.

Reionization Process that caused matter to reionize early in the history of the Universe

In the fields of Big Bang theory and cosmology, reionization is the process that caused matter in the universe to reionize after the lapse of the "dark ages".

Metallicity Relative abundance of heavy elements in a star or other astronomical object

In astronomy, metallicity is the abundance of elements present in an object that are heavier than hydrogen and helium. Most of the normal physical matter in the Universe is either hydrogen or helium, and astronomers use the word "metals" as a convenient short term for "all elements except hydrogen and helium". This word-use is distinct from the conventional chemical or physical definition of a metal as an electrically conducting solid. Stars and nebulae with relatively high abundances of heavier elements are called "metal-rich" in astrophysical terms, even though many of those elements are non-metals in chemistry.

A super star cluster (SSC) is a very massive young open cluster that is thought to be the precursor of a globular cluster. These clusters are referred to as "super" due to the fact that they are relatively more luminous and contain more mass than other young star clusters. The SSC, however, does not have to physically be larger than other clusters of lower mass and luminosity. They typically contain a very large number of young, massive stars that ionize a surrounding HII region or a so-called "Ultra dense HII regions (UDHIIs)" in the Milky Way Galaxy as well as in other galaxies. An SSC's HII region is in turn surrounded by a cocoon of dust. In many cases, the stars and the HII regions will be invisible to observations in certain wavelengths of light, such as the visible spectrum, due to high levels of extinction. As a result, the youngest SSCs are best observed and photographed in radio and infrared. SSCs, such as Westerlund 1 (Wd1), have been found in the Milky Way Galaxy. However, most have been observed in farther regions of the universe. In the galaxy M82 alone, 197 young SSCs have been observed and identified using the Hubble Space Telescope.

Lyman-alpha blob

In astronomy, a Lyman-alpha blob (LAB) is a huge concentration of a gas emitting the Lyman-alpha emission line. LABs are some of the largest known individual objects in the Universe. Some of these gaseous structures are more than 400,000 light years across. So far they have only been found in the high-redshift universe because of the ultraviolet nature of the Lyman-alpha emission line. Since Earth's atmosphere is very effective at filtering out UV photons, the Lyman-alpha photons must be redshifted in order to be transmitted through the atmosphere.

Low-ionization nuclear emission-line region Type of galactic nucleus

A low-ionization nuclear emission-line region (LINER) is a type of galactic nucleus that is defined by its spectral line emission. The spectra typically include line emission from weakly ionized or neutral atoms, such as O, O+, N+, and S+. Conversely, the spectral line emission from strongly ionized atoms, such as O++, Ne++, and He+, is relatively weak. The class of galactic nuclei was first identified by Timothy Heckman in the third of a series of papers on the spectra of galactic nuclei that were published in 1980.

Lyman continuum photons Photons emitted from stars at photon energies above the Lyman limit

Lyman continuum photons, shortened to Ly continuum photons or Lyc photons, are the photons emitted from stars at photon energies above the Lyman limit. Hydrogen is ionized by absorbing LyC. Working from Victor Schumann's discovery of ultraviolet light, from 1906 to 1914, Theodore Lyman observed that atomic hydrogen absorbs light only at specific frequencies and the Lyman series is thus named after him. All the wavelengths in the Lyman series are in the ultraviolet band. This quantized absorption behavior occurs only up to an energy limit, known as the ionization energy. In the case of neutral atomic hydrogen, the minimum ionization energy is equal to the Lyman limit, where the photon has enough energy to completely ionize the atom, resulting in a free proton and a free electron. Above this energy, all wavelengths of light may be absorbed. This forms a continuum in the energy spectrum; the spectrum is continuous rather than composed of many discrete lines, which are seen at lower energies.

Lyman-alpha emitter

A Lyman-alpha emitter (LAE) is a type of distant galaxy that emits Lyman-alpha radiation from neutral hydrogen.

NGC 2366 Magellanic barred irregular galaxy in the constellation Camelopardalis

NGC 2366 is a Magellanic barred irregular dwarf galaxy located in the constellation Camelopardalis.

Pea galaxy Possibly a type of luminous blue compact galaxy which is undergoing very high rates of star formation

A Pea galaxy, also referred to as a Pea or Green Pea, might be a type of luminous blue compact galaxy that is undergoing very high rates of star formation. Pea galaxies are so-named because of their small size and greenish appearance in the images taken by the Sloan Digital Sky Survey (SDSS).

Green bean galaxy Very rare astronomical objects that are thought to be quasar ionization echos

Green bean galaxies (GBGs) are very rare astronomical objects that are thought to be quasar ionization echos. They were discovered by Mischa Schirmer and colleagues R. Diaz, K. Holhjem, N.A. Levenson, and C. Winge. The authors report the discovery of a sample of Seyfert-2 galaxies with ultra-luminous galaxy-wide narrow-line regions (NLRs) at redshifts z=0.2-0.6.

9Spitch Galaxy in the constellation Cetus

9Spitch is a gravitationally lensed system of two galaxies. The nearer galaxy is approximately 2 billion light-years (610 Mpc) from Earth and is designated SDSS J020941.27+001558.4, while the lensed galaxy is 10 billion light-years (3.1 Gpc) distant and is designated ASW0009io9. It was discovered in January 2014 by Zbigniew "Zbish" Chetnik, an amateur astronomer from Northamptonshire, England, while classifying images on the website The discovery was announced on the BBC television programme Stargazing Live.

The photon underproduction crisis is a cosmological discussion concerning the purported deficit between observed photons and predicted photons.

Alice E. Shapley is a professor at the University of California, Los Angeles (UCLA) in the Department of Physics and Astronomy. She was one of the discoverers of the spiral galaxy BX442.

Haro 11 Galaxy in the constellation Sculptor

Haro 11 (H11) is a small galaxy at a distance of 300,000,000 light-years (redshift z=0.020598). It is situated in the southern constellation of Sculptor. Visually, it appears to be an irregular galaxy, as the ESO image to the right shows. H11 is named after Guillermo Haro, a Mexican astronomer who first included it in a study published in 1956 about blue galaxies. H11 is a starburst galaxy that has 'super star clusters' within it and is one of nine galaxies in the local universe known to emit Lyman continuum photons (LyC).

A1703 zD6

A1703 zD6 is a strongly lensed Lyman-alpha emitter. It is located behind a foreground galaxy cluster known as Abell 1703, hence its name. It has a spectroscopically determined redshift of over 7, corresponding to a light travel time of 12.9 billion years. It is located in the Canes Venatici constellation. It was discovered in 2012, by a group led by L. D. Bradley, published in The Astrophysical Journal.

NGC 7130 Spiral galaxy in the constellation Piscis Austrinus

NGC 7130 is a spiral galaxy located in the constellation Piscis Austrinus. It is located at a distance of circa 220 million light years from Earth, which, given its apparent dimensions, means that NGC 7130 is about 100,000 light years across. It was discovered by John Herschel on September 25, 1834, and discovered independently by Lewis Swift on September 17, 1897. The location of the galaxy given in the New General Catalogue was off by 30 arcminutes in declination from the location of the galaxy.

NGC 1386 Spiral galaxy in the constellation Eridanus

NGC 1386 is a spiral galaxy located in the constellation Eridanus. It is located at a distance of circa 53 million light years from Earth, which, given its apparent dimensions, means that NGC 1386 is about 50,000 light years across. It is a Seyfert galaxy, the only one in Fornax Cluster.


  1. 1 2 3 E. Leitet; N. Bergvall; M. Hayes; S. Linné; et al. (2013). "Escape of Lyman continuum radiation from local galaxies. Detection of leakage from the young starburst Tol 1247-232". Astronomy & Astrophysics. 553: A106. arXiv: 1302.6971 . Bibcode:2013A&A...553A.106L. doi:10.1051/0004-6361/201118370. S2CID   118476876.
  2. 1 2 3 4 U. Christoffer Fremling (6 June 2013). "Leakage of ionizing radiation from the nearby galaxy Tololo 1247-232" (PDF). The University of Stockholm. pp. 1–117. Retrieved 4 February 2015.
  3. M.G. Smith; C. Aguirre; M. Zemelman (1976). "Emission-line galaxies and quasars. II - The classification systems and list N1, declination not exceeding about -27.5 deg, galactic latitude not less than about +20 deg". Astrophysical Journal Supplement Series. 32: 217–231. Bibcode:1976ApJS...32..217S. doi:10.1086/190397.
  4. 1 2 Dawn Erb (2016). "Cosmology: Photons from dwarf galaxy zap hydrogen". Nature. 529 (7585): 159–160. Bibcode:2016Natur.529..159E. doi: 10.1038/529159a . PMID   26762452.
  5. Y.I. Izotov; I. Orlitova; D. Schaerer; T.X. Thuan; A. Verhamme; N.G. Guseva; G. Worseck (2016). "Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy". Nature. 529 (7585): 178–180. arXiv: 1601.03068 . Bibcode:2016Natur.529..178I. doi:10.1038/nature16456. PMID   26762455. S2CID   3033749.
  6. Y. I. Izotov; D. Schaerer; T. X. Thuan; G. Worseck; N. G. Guseva; I. Orlitova; A. Verhamme (October 2016). "Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies". MNRAS. 461 (4): 3683–3701. arXiv: 1605.05160 . Bibcode:2016MNRAS.461.3683I. doi:10.1093/mnras/stw1205.
  7. 1 2 J. Melnick; R. Terlevich; M. Moles (December 1985). "Near Infrared Photometry of Violent Star Formation Regions". Revista Mexicana de Astronomía y Astrofísica. 11: 91. Bibcode:1985RMxAA..11...91M.
  8. R. Terlevich; J. Melnick; J. Masegosa; M. Moles; et al. (December 1991). "A spectrophotometric catalogue of HII galaxies". Astronomy and Astrophysics Supplement Series. 91 (2): 285. Bibcode:1991A&AS...91..285T.
  9. S. Borthakur; T.M. Heckman; C. Leitherer; R.A. Overzier (2014). "A Local Clue to the Reionization of the Universe". Science. 346 (6206): 216–219. arXiv: 1410.3511 . Bibcode:2014Sci...346..216B. CiteSeerX . doi:10.1126/science.1254214. PMID   25301623. S2CID   206557611.
  10. D.N. Spergel; et al. (2007). "Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology". The Astrophysical Journal Supplement Series. 170 (2): 377–408. arXiv: astro-ph/0603449 . Bibcode:2007ApJS..170..377S. doi:10.1086/513700. S2CID   1386346.
  11. 1 2 Puschnig, Johannes; Hayes, Matthew; Östlin, Göran; Rivera-Thorsen, T. E.; Melinder, J.; Cannon, J. M.; Menacho, V.; Zackrisson, E.; Bergvall, N.; Leitet, E. (August 2017). "The Lyman continuum escape and ISM properties in Tololo 1247-232 - new insights from HST and VLA". Monthly Notices of the Royal Astronomical Society. 469 (3): 3252–3269. arXiv: 1704.05943 . Bibcode:2017MNRAS.469.3252P. doi:10.1093/mnras/stx951.