Tracheo-oesophageal puncture

Last updated
Tracheo-esophageal puncture
ICD-9-CM 31.95

A tracheo-esophageal puncture (or tracheoesophageal puncture) is a surgically created hole between the trachea (windpipe) and the esophagus (the tubal pathway between the throat and the stomach) in a person who has had a total laryngectomy, a surgery where the larynx (voice box) is removed. The purpose of the puncture is to restore a person’s ability to speak after the vocal cords have been removed. This involves creation of a fistula between trachea and oesophagus, puncturing the short segment of tissue or “common wall” that typically separates these two structures. A voice prosthesis is inserted into this puncture. The prosthesis keeps food out of the trachea but lets air into the esophagus for oesophageal speech.

Contents

A laryngectomized person is required to breathe through a permanent breathing hole in the neck, called a tracheostoma. When a laryngectomized person occludes the tracheostoma, completely blocking exhaled air to leave the body through that pathway, exhaled air is directed through the voice prosthesis. This air enters the esophagus and escapes through the mouth. During this process, as the air passes through the upper tissues of the esophagus and lower throat, it allows for vibration of the tissues of the pharyngoesophageal segment (also called PE-segment, neoglottis or pseudoglottis). This vibration creates a sound that serves to replace the sound the vocal cords previously produced. Other methods of alaryngeal speech (speech without vocal cords) are esophageal speech, and artificial larynx speech. Studies show that tracheoesophageal speech is found to be closer to normal speech than esophageal speech [1] [2] [3] and is often reported to be better, both in terms of naturalness as well as how well it is understood, when compared to esophageal speech [4] [5] and electrolarynx speech. [6] The first report on a tracheoesophageal puncture dates back to 1932 [7] when a laryngectomized patient was said to use a hot ice pick to create a tracheoesophageal puncture in himself. This enabled him to speak by forcing air through the puncture when closing off the tracheostoma with a finger.

Puncture procedures

There are two tracheo-esophageal puncture procedure types: Primary and secondary puncture. Initially, the procedure was described as a secondary procedure [8] and later also as a primary procedure. [9]

Primary tracheoesophageal puncture

This procedure is performed during the total laryngectomy surgery. After removal of the larynx and creation of the tracheostoma, the puncture is made through the back wall of the trachea into the front wall of the esophagus. The main advantages of a primary puncture are: 1) that a second surgery to create the puncture is avoided (including the related costs and risks) and: 2) that the patient will be able to speak within a few weeks after total laryngectomy. [10] [11]

There are cases where a primary procedure cannot be performed. For example, this procedure cannot be used when there is complete separation of the tracheoesophageal wall where the puncture would otherwise be placed (for example, in case a portion of the esophagus is removed requiring an anastomosis, or “reconnection” of structures in the region). In that case, a sufficient period of recovery and wound healing would be required. A secondary puncture could then be placed.[ citation needed ]

Secondary tracheoesophageal puncture

This procedure refers to a puncture that is placed anytime after the total laryngectomy surgery. The decision to use a primary or secondary puncture can vary greatly. Secondary puncture can be performed when: 1) primary puncture was not possible, 2) for re-puncture after closure of a previous tracheoesophageal puncture, 3) because of physician or patient preference, and 4) in case failure of esophageal or electrolarynx speech if this was chosen as the initial speech option.[ citation needed ]

Placement of the voice prosthesis

There are two different methods that can be used to place the voice prosthesis: Primary placement: A voice prosthesis is placed into the puncture [12] [13] immediately after it is created. During the immediate postoperative period, the patient is fed through a feeding tube, either inserted directly into the stomach or through a more temporary version than extends from the nose into the stomach. This tube is removed when the patient is able to eat enough by mouth to maintain nutritional needs; this can be as early as the second day following surgery. [11] Speech production with the voice prosthesis is initiated when the surgical area has healed, after clearance by the surgeon. The advantages of this method are: 1) the voice prosthesis stabilizes the TE wall, 2) the flanges of the device protect the puncture against leakage of fluids, stomach acids and other stomach contents, 3) there is no irritation or pressure from a stenting catheter, used to maintain the puncture opening until a voice prosthesis can be placed, 4) patients become quickly familiar with their prosthesis care as they receive instructions while hospitalized, 5) the patient will not have to undergo an outpatient procedure during which the voice prosthesis needs to be fitted, 6) many patients can learn to speak before the start of any post-operative radiation therapy (if indicated) 7) the patient can focus on voice production immediately, as wound healing allows. [11]

Another advantage is that generally, the voice prosthesis placed at the time of surgery lasts relatively long and requires no early frequent replacements. [14] [15] The only disadvantage is that the patient will need to use a feeding tube for a few days.

Delayed placement: Instead of the voice prosthesis, a catheter (red rubber, Silastic Foley catheter, Ryle's tube) is introduced through the puncture into esophagus. [10] The tube is sometimes utilized for feeding the patient during the immediate post operative period, or the patient has a standard feeding tube for feeding. The voice prosthesis is placed after the patient is able to eat sufficiently by mouth and speech production is initiated when healing has completed, after clearance by the surgeon. The advantage of this method is that the patient may be fed through the catheter, not requiring standard tube feeding. The primary disadvantage is that the patient will have to undergo an outpatient procedure to have the voice prosthesis placed. Another disadvantage can be the need for more frequent replacements early after fitting of the voice prosthesis due to changes in the length of the puncture. [16]

Indications

Indications include voice rehabilitation for patients who are undergoing a total laryngectomy (primary puncture) or patients who have had a total laryngectomy in the past (secondary puncture). Contra-indications are mainly related to the use of the voice prosthesis and not the puncture procedure itself. It is important to have healthy tissue at the puncture site. This will help ensure the voice prosthesis is properly supported. Poor tissue condition at the puncture site can be a contra-indication for TE puncture. It is also important that the patient candidacy be taken into account. Patients must be able to understand and manage proper prosthesis maintenance and monitor for complications or device problems. Bleeding disorders, anxiety disorders, dementia, poor vision and poor manual dexterity are all factors that may negatively interfere with successful voice restoration using tracheoesophageal techniques and should be discussed further with an appropriate healthcare provider who is knowledgeable in this topic.[ citation needed ]

Related Research Articles

Trachea Cartilaginous tube that connects the pharynx and larynx to the lungs

The trachea, also known as the windpipe, is a cartilaginous tube that connects the larynx to the bronchi of the lungs, allowing the passage of air, and so is present in almost all air-breathing animals with lungs. The trachea extends from the larynx and branches into the two primary bronchi. At the top of the trachea the cricoid cartilage attaches it to the larynx. The trachea is formed by a number of horseshoe-shaped rings, joined together vertically by overlying ligaments, and by the trachealis muscle at their ends. The epiglottis closes the opening to the larynx during swallowing.

Tracheal intubation Placement of a tube into the trachea

Tracheal intubation, usually simply referred to as intubation, is the placement of a flexible plastic tube into the trachea (windpipe) to maintain an open airway or to serve as a conduit through which to administer certain drugs. It is frequently performed in critically injured, ill, or anesthetized patients to facilitate ventilation of the lungs, including mechanical ventilation, and to prevent the possibility of asphyxiation or airway obstruction.

Esophageal atresia Congenital discontinuity of the oesophagus

Esophageal atresia is a congenital medical condition that affects the alimentary tract. It causes the esophagus to end in a blind-ended pouch rather than connecting normally to the stomach. It comprises a variety of congenital anatomic defects that are caused by an abnormal embryological development of the esophagus. It is characterized anatomically by a congenital obstruction of the esophagus with interruption of the continuity of the esophageal wall.

Tracheotomy Temporary surgical incision to create an airway into the trachea

Tracheotomy, or tracheostomy, is a surgical procedure which consists of making an incision (cut) on the anterior aspect (front) of the neck and opening a direct airway through an incision in the trachea (windpipe). The resulting stoma (hole) can serve independently as an airway or as a site for a tracheal tube or tracheostomy tube to be inserted; this tube allows a person to breathe without the use of the nose or mouth.

Esophageal speech, also known as esophageal voice, is an airstream mechanism for speech that involves oscillation of the esophagus. This contrasts with traditional laryngeal speech, which involves oscillation of the vocal folds. In esophageal speech, pressurized air is injected into the upper esophagus and then released in a controlled manner to create the airstream necessary for speech. Esophageal speech is a learned skill that requires speech training and much practice. On average it takes 6 months to a year to learn this form of speech. Because of the high level of difficulty in learning esophageal speech, some patients are unable to master the skill.

A Zenker's diverticulum, also pharyngeal pouch, is a diverticulum of the mucosa of the human pharynx, just above the cricopharyngeal muscle. It is a pseudo diverticulum.

Laryngectomy

Laryngectomy is the removal of the larynx and separation of the airway from the mouth, nose and esophagus. In a total laryngectomy, the entire larynx is removed. In a partial laryngectomy, only a portion of the larynx is removed. Following the procedure, the person breathes through an opening in the neck known as a stoma. This procedure is usually performed by an ENT surgeon in cases of laryngeal cancer. Many cases of laryngeal cancer are treated with more conservative methods. A laryngectomy is performed when these treatments fail to conserve the larynx or when the cancer has progressed such that normal functioning would be prevented. Laryngectomies are also performed on individuals with other types of head and neck cancer. Post-laryngectomy rehabilitation includes voice restoration, oral feeding and more recently, smell and taste rehabilitation. An individual's quality of life can be affected post-surgery.

Tracheoesophageal fistula Medical condition

A tracheoesophageal fistula is an abnormal connection (fistula) between the esophagus and the trachea. TEF is a common congenital abnormality, but when occurring late in life is usually the sequela of surgical procedures such as a laryngectomy.

An electrolarynx, sometimes referred to as a "throat back", is a medical device about the size of a small electric razor used to produce clearer speech by those people who have lost their voice box, usually due to cancer of the larynx. The most common device is a handheld, battery-operated device pressed against the skin under the mandible which produces vibrations to allow speech; other variations include a device similar to the "talk box" electronic music device, which delivers the basis of the speech sound via a tube placed in the mouth. Earlier non-electric devices were called mechanical larynxes. Along with developing esophageal voice, using a speech synthesizer, or undergoing a surgical procedure, the electrolarynx serves as a mode of speech recovery for laryngectomy patients.

Endoscopic foreign body retrieval

Endoscopic foreign body retrieval refers to the removal of ingested objects from the esophagus, stomach and duodenum by endoscopic techniques. It does not involve surgery, but rather encompasses a variety of techniques employed through the gastroscope for grasping foreign bodies, manipulating them, and removing them while protecting the esophagus and trachea. It is of particular importance with children, people with mental illness, and prison inmates as these groups have a high rate of foreign body ingestion.

Laryngotracheal stenosis Medical condition

Laryngotracheal stenosis refers to abnormal narrowing of the central air passageways. This can occur at the level of the larynx, trachea, carina or main bronchi. In a small number of patients narrowing may be present in more than one anatomical location.

Esophageal food bolus obstruction Medical condition

An esophageal food bolus obstruction is a medical emergency caused by the obstruction of the esophagus by an ingested foreign body.

Eric M. Genden, MD, MHCA, FACS is a United States head and neck cancer surgeon at the Icahn School of Medicine at Mount Sinai and Mount Sinai Health System in New York City. where he serves as the Isidore Friesner Professor and Chairman of Otolaryngology–Head and Neck Surgery and Professor of Neurosurgery and Immunology. According to his biography at Mount Sinai, Genden's professional titles also include Senior Associate Dean for Clinical Affairs, He is Executive Vice President of Ambulatory Surgery, and Director of the Head and Neck Institute at the Mount Sinai Health System.

Bronchomalacia Medical condition

Bronchomalacia is a term for weak cartilage in the walls of the bronchial tubes, often occurring in children under a day. Bronchomalacia means 'floppiness' of some part of the bronchi. Patients present with noisy breathing and/or wheezing. There is collapse of a main stem bronchus on exhalation. If the trachea is also involved the term tracheobronchomalacia (TBM) is used. If only the upper airway the trachea is involved it is called tracheomalacia (TM). There are two types of bronchomalacia. Primary bronchomalacia is due to a deficiency in the cartilaginous rings. Secondary bronchomalacia may occur by extrinsic compression from an enlarged vessel, a vascular ring or a bronchogenic cyst. Though uncommon, idiopathic tracheobronchomalacia has been described in older adults.

Voice therapy Used to aid voice disorders or altering quality of voice

Voice therapy consists of techniques and procedures that target vocal parameters, such as vocal fold closure, pitch, volume, and quality. This therapy is provided by speech-language pathologists and is primarily used to aid in the management of voice disorders, or for altering the overall quality of voice, as in the case of transgender voice therapy. Vocal pedagogy is a related field to alter voice for the purpose of singing. Voice therapy may also serve to teach preventive measures such as vocal hygiene and other safe speaking or singing practices.

A laryngeal cleft or laryngotracheoesophageal cleft is a rare congenital abnormality in the posterior laryngo-tracheal wall. It occurs in approximately 1 in 10,000 to 20,000 births. It means there is a communication between the oesophagus and the trachea, which allows food or fluid to pass into the airway.

Voice prosthesis

A voice prosthesis is an artificial device, usually made of silicone that is used in conjunction with voice therapy to help laryngectomized patients to speak. During a total laryngectomy, the entire voice box (larynx) is removed and the windpipe (trachea) and food pipe (esophagus) are separated from each other. During this operation an opening between the food pipe and the windpipe can be created. This opening can also be created at a later time. This opening is called a tracheo-esophageal puncture. The voice prosthesis is placed in this opening. Then, it becomes possible to speak by occluding the stoma and blowing the air from the lungs through the inside of the voice prosthesis and through the throat, creating a voice sound, which is called tracheo-esophageal speech. The back end of the prosthesis sits at the food pipe. To avoid food, drinks, or saliva from coming through the prosthesis and into the lungs, the prosthesis has a small flap at the back. There are two ways of inserting the voice prosthesis: through the mouth and throat with the help of a guide wire, or directly through the tracheostoma (anterograde) manner. Nowadays, most voice prosthesis are placed anterograde, through the stoma.

Heat and Moisture Exchangers (HME) are devices used in mechanically ventilated patients intended to help prevent complications due to "drying of the respiratory mucosa, such as mucus plugging and endotracheal tube (ETT) occlusion." HMEs are one type of commercial humidification system, which also include non-heated-wire humidifiers and heated-wire humidifiers.

Heat and moisture exchanger after laryngectomy

Heat and moisture exchangers (HME) are used after laryngectomy to help reduce breathing restrictions and compensate nasal functions.

Laryngotracheal reconstruction is a surgical procedure that involves expanding or removing parts of the airway to widen a narrowing within it, called laryngotracheal stenosis or subglottic stenosis.

References

  1. Baggs TW, Pine SJ (July 1983). "Acoustic characteristics: tracheoesophageal speech". J Commun Disord. 16 (4): 299–307. doi:10.1016/0021-9924(83)90014-X. PMID   6571180.
  2. Pindzola RH, Cain BH (April 1988). "Acceptability ratings of tracheoesophageal speech". Laryngoscope. 98 (4): 394–7. doi: 10.1288/00005537-198804000-00007 . PMID   3352438.
  3. Robbins J, Fisher HB, Blom EC, Singer MI (May 1984). "A comparative acoustic study of normal, esophageal, and tracheoesophageal speech production". J Speech Hear Disord. 49 (2): 202–10. doi:10.1044/jshd.4902.202. PMID   6716991.
  4. Debruyne F, Delaere P, Wouters J, Uwents P (April 1994). "Acoustic analysis of tracheo-oesophageal versus oesophageal speech". J Laryngol Otol. 108 (4): 325–8. doi:10.1017/s0022215100126660. PMID   8182320.
  5. Max L, Steurs W, de Bruyn W (January 1996). "Vocal capacities in esophageal and tracheoesophageal speakers". Laryngoscope. 106 (1 Pt 1): 93–6. doi:10.1097/00005537-199601000-00018. PMID   8544636. S2CID   20134241.
  6. Watson JB, Williams SE (August 1987). "Laryngectomees' and nonlaryngectomees' perceptions of three methods of alaryngeal voicing". J Commun Disord. 20 (4): 295–304. doi:10.1016/0021-9924(87)90011-6. PMID   3624525.
  7. Guttman MR (1932). "Rehabilitation of the voice in laryngectomized patients". Arch Otolaryngol. 15: 478–488.
  8. Singer MI, Blom ED (1980). "An endoscopic technique for restoration of voice after laryngectomy". Ann. Otol. Rhinol. Laryngol. 89 (6 Pt 1): 529–33. doi:10.1177/000348948008900608. PMID   7458140. S2CID   10447001.
  9. Maves MD, Lingeman RE (1982). "Primary vocal rehabilitation using the Blom-Singer and Panje voice prostheses". Ann. Otol. Rhinol. Laryngol. 91 (4 Pt 1): 458–60. doi:10.1177/000348948209100429. PMID   7114733. S2CID   27689897.
  10. 1 2 Pou AM (June 2004). "Tracheoesophageal voice restoration with total laryngectomy". Otolaryngol. Clin. North Am. 37 (3): 531–45. doi:10.1016/j.otc.2004.01.009. PMID   15163599.
  11. 1 2 3 Hilgers FJ, van den Brekel MW. "Ch. 113: Vocal and Speech Rehabilitation Following Laryngectomy". In Flint Haughey, Richardson, Robbins, Thomas, Niparko, Lund (eds.). Cummings Otolaryngology: Head and Neck Surgery (5th ed.). Philadelphia: Elsevier. pp. 1594–1610.
  12. Hilgers FJ, Schouwenburg PF (November 1990). "A new low-resistance, self-retaining prosthesis (Provox) for voice rehabilitation after total laryngectomy". Laryngoscope. 100 (11): 1202–7. doi: 10.1288/00005537-199011000-00014 . PMID   2233085.
  13. Manni JJ, van den Broek P, de Groot MA, Berends E (October 1984). "Voice rehabilitation after laryngectomy with the Groningen prosthesis". J Otolaryngol. 13 (5): 333–6. PMID   6544851.
  14. Elving GJ, Van Weissenbruch R, Busscher HJ, Van Der Mei HC, Albers FW (September 2002). "The influence of radiotherapy on the lifetime of silicone rubber voice prostheses in laryngectomized patients". Laryngoscope. 112 (9): 1680–3. doi:10.1097/00005537-200209000-00028. PMID   12352686. S2CID   45017821.
  15. Op de Coul BM, Hilgers FJ, Balm AJ, Tan IB, van den Hoogen FJ, van Tinteren H (November 2000). "A decade of postlaryngectomy vocal rehabilitation in 318 patients: a single Institution's experience with consistent application of provox indwelling voice prostheses". Arch. Otolaryngol. Head Neck Surg. 126 (11): 1320–8. doi: 10.1001/archotol.126.11.1320 . PMID   11074828.
  16. Leder SB, Sasaki CT (August 1995). "Incidence, timing, and importance of tracheoesophageal prosthesis resizing for successful tracheoesophageal speech production". Laryngoscope. 105 (8 Pt 1): 827–32. doi:10.1288/00005537-199508000-00011. PMID   7630295. S2CID   23076024.