Trans-Mexican Volcanic Belt

Last updated
Trans-Mexican Volcanic Belt
Stratigraphic range: Neogene to Quaternary
Mexico 6 Volcanoes.jpg
Six Mexican Volcanoes
Left to right Ixtaccíhuatl, Popocatépetl, Matlalcueitl (Malinche), Cofre de Perote (most distant), Pico de Orizaba, Sierra Negra
Type Volcanic Arc [1]
Overlies Sierra Madre Occidental [1] [2]
Area160,000 kilometres (99,000 mi)2 [1]
ThicknessEast of 101°W 50-55 km [1] West of 101°W 35-40 km [1]
Coordinates 19°02′N97°16′W / 19.03°N 97.27°W / 19.03; -97.27 .
Region Central Mexico
Extent1,000 kilometres (620 mi) [3]
Eje Neovolcanico Mexico.jpg

The Trans-Mexican Volcanic Belt (Spanish : Eje Volcánico Transversal), also known as the Transvolcanic Belt and locally as the Sierra Nevada (Snowy Mountain Range), [4] is a volcanic belt that covers central-southern Mexico. Several of its highest peaks have snow all year long, and during clear weather, they are visible to a large percentage of those who live on the many high plateaus from which these volcanoes rise.



The Trans-Mexican Volcanic Belt spans across Central-Southern Mexico from the Pacific Ocean to the Gulf of Mexico between 18°30'N and 21°30'N, resting on the southern edge of the North American Plate. [1] [5] This approximately 1000 kilometer long, 90–230 km broad structure is an east–west, active, continental volcanic arc; encompassing an area of approximately 160,000 km2. [1] Over several million years, the subduction of the Rivera and Cocos plates beneath the North American Plate along the northern end of the Middle America Trench formed the Trans-Mexican Volcanic Belt. [6] [7] The Trans-Mexican Volcanic Belt is a unique volcanic belt; it is not parallel to the Middle American Trench, and many of the main stratovolcanoes are positioned obliquely to the general position of the arc. In addition to the physiographic complexities, igneous compositions vary—dominant subduction related products contrast with intraplate geo-chemical signatures. [1] [3] The many intriguing aspects of the belt has spurred several hypotheses based on a typical subduction scenario; Intra-plate leaky transform faults, mantle plumes, continental rifting, and jump of the eastward Pacific Rise. [1] [6] These features are partially related to the reactivation of early fault systems during the Trans-Mexican Volcanic belt's evolution. The main brittle fault system's geometry, kinematics, and age define a complex array of what could be multiple factors affecting the deformation of the belt. [1] [2] [8] It exhibits many volcanic features, not limited to large stratovolcanoes, including monogenetic volcano cones, shield volcanoes, lava dome complexes, and major calderas. [3]

Geologic framework

Major Volcanoes of Mexico. From west to east, volcanoes part of the Trans-Mexican Volcanic belt are Nevado de Colima, Paricutin, Popocatepetl, and Pico de Orizaba. Map mexico volcanoes.gif
Major Volcanoes of Mexico. From west to east, volcanoes part of the Trans-Mexican Volcanic belt are Nevado de Colima, Parícutin, Popocatépetl, and Pico de Orizaba.

Prior to the formation of the Trans-Mexican Volcanic Belt, an older, but related volcanic belt, the Sierra Madre Occidental occupied the area. Resuming in the Eocene, post-Laramide deformation, subduction related volcanism formed the Sierra Madre Occidental silic volcanic arc at a paleo-subduction zone off the coast of Baja California, before the peninsula rifted away. [5] [9] [10] From the Late Eocene to the Middle Miocene, counterclockwise rotation of the volcanic arc transitioned the once active Sierra Madre Occidental to a now active Trans-Mexican Volcanic Belt. [5] [9] By the Middle Miocene, the transition from the silicic to more mafic compositions was complete, and can be considered the beginning of the Trans-Mexican Volcanic Belt. [5] Due to the orthogonal orientation of the Trans-Mexican Volcanic Belt in relation to the trend of Mexican tectonic provinces, its Pre-Cretaceous basement is highly heterogeneous. [1] The Trans-Mexican Volcanic Belt east of 101°W rests upon Precambrian terranes, assembled into the Oaxaquia microcontinent and on the Paleozoic Mixteco terrane. West of 101°W, the Trans-Mexican Volcanic Belt resides on top of the Guerro composite terrane - a make up of Jurassic to Cretaceous marine marginal arcs, which are built on Triassic - Early Jurassic siliclastic turbidites. Assemblage of these basement rocks results with a thickness of 50–55 km east of 101°W and 35–40 km west of 101°W. [1] [8]

Plate evolution

The subducting plates originated from the breakup of the Farallon Plate at approximately 23 Ma, which created two plates at equatorial latitudes, the Cocos Plate and southern Nazca Plate. The Rivera Plate was the last fragment detached from the Cocos Plate, becoming a microplate at around 10 Ma. [1] This small plate is bounded by the Rivera fracture zone, the East Pacific Rise, the Tamayo fracture zone, and the Middle American Trench. The larger Cocos Plate is bordered by the North American Plate (NAM) and the Caribbean Plate to the northeast, the Pacific Plate to the west, and to the south by the Nazca Plate. [1] The Cocos and Rivera are relatively young oceanic plates (25 and 10 Ma) that are subducting along the Middle American Trench at different convergence rates (Rivera = ~30 mm/yr and the Cocos = ~ 50–90 mm/yr). [3] [11] Commonly found subduction related rocks such as calc-alkaline rocks volumetrically occupy a majority of the Trans-Mexican Volcanic Belt but smaller volumes of intraplate-like lavas, potassium rich rocks, and adakites are associated with the area. [3] Middle Miocene adakitic (more felsic) rocks are found furthest from the trench and along the volcanic front of the central Trans-Mexican Volcanic Belt during the Pliocene-Quaternary. It has been suggested that slab melting contributed to the adakitic imprint on the Trans-Mexican Volcanic Belt, prompted by the prolonged flat subduction of the Cocos Plate. [3]

Belt evolution


Volcanic Evolution and changes in composition over time. 1) Early to Late Miocene the belt the Cocos and Rivera plate begin subduction beneath Central Mexico. 2) Late Miocene to Early Pliocene the slab tear begins to propagate West to East across the back northern area of the belt, allowing Asthenospheric heat in to generate the Mafic episode. 3)Latest Miocene - Early Pliocene was the onset of more silic volcanics generated by Flat Slab Subduction which pushed the belt further inland to the north. 4)Late Pliocene to Holocene is characterized by slab rollback sending the volcanic arc trenchward to the present day position Volcanic Evolution of Trans-Mexican Volcanic Belt.pdf
Volcanic Evolution and changes in composition over time. 1) Early to Late Miocene the belt the Cocos and Rivera plate begin subduction beneath Central Mexico. 2) Late Miocene to Early Pliocene the slab tear begins to propagate West to East across the back northern area of the belt, allowing Asthenospheric heat in to generate the Mafic episode. 3)Latest Miocene - Early Pliocene was the onset of more silic volcanics generated by Flat Slab Subduction which pushed the belt further inland to the north. 4)Late Pliocene to Holocene is characterized by slab rollback sending the volcanic arc trenchward to the present day position

Cause of flat slab subduction

Flat slab subduction can commonly be explained by oceanic plateau subduction and a fast overriding plate. Central Mexico's flat subduction is not evident. The Trans-Mexican Volcanic belt's flat slab is confined between ~101°W and 96°W; this region may be explained by thicker continental crust. Existence of thick strong crust combined with decreasing fluid input contributed to narrowing the asthenospheric wedge, increasing viscosity and suction forces, which led to flat subduction—preventing the oceanic plate from entering the mantle. [1] [11]



From the west, the Trans-Mexican Volcanic Belt runs from Colima and Jalisco east through northern Michoacán, southern Guanajuato, southern Querétaro, México State, southern Hidalgo, the Distrito Federal, northern Morelos, Puebla, and Tlaxcala, to central Veracruz.

The Mexican Plateau lies to the north, bounded by the Sierra Madre Occidental to the west and Sierra Madre Oriental to the east. The Cofre de Perote and Pico de Orizaba volcanoes, in Puebla and Veracruz, mark the meeting of the Trans-Mexican Volcanic Belt with the Sierra Madre Oriental. To the south, the basin of the Balsas River lies between the Trans-Mexican Volcanic Belt and the Sierra Madre del Sur. This area is also a distinct physiographic province of the larger Sierra Madre System physiographic division. [4]

The Sierra de Ajusco-Chichinauhtzin also forms part of the belt. [15]


Pico de Orizaba Pico de Orizaba 1 Zoom.jpg
Pico de Orizaba

The highest point, also the highest point in Mexico, is Pico de Orizaba (5,636 metres (18,491 ft)) also known as Citlaltépetl, located at 19°01′N97°16′W / 19.017°N 97.267°W / 19.017; -97.267 . This, and several of the other high peaks, are active or dormant volcanoes.

Other notable volcanoes in the range include (from west to east) Nevado de Colima (4,339 metres (14,236 ft)), Parícutin (2,774 metres (9,101 ft)), Nevado de Toluca (4,577 metres (15,016 ft)), Popocatépetl (5,452 metres (17,887 ft)), Iztaccíhuatl (5,286 metres (17,343 ft)), Matlalcueitl (4,461 metres (14,636 ft)) Cofre de Perote (4,282 metres (14,049 ft)) and Sierra Negra, a companion of the Pico de Orizaba (4,580 metres (15,030 ft)). [4]


The mountains are home to the Trans-Mexican Volcanic Belt pine-oak forests, one of the Mesoamerican pine-oak forests sub-ecoregions.

The Trans-Mexican Volcanic Belt has many endemic species, including the Transvolcanic jay (Aphelocoma ultramarina). [4]

See also

Related Research Articles

Stratovolcano Tall, conical volcano built up by many layers of hardened lava and other ejecta

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava, tephra, pumice and ash. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and hardens before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high-to-intermediate levels of silica, with lesser amounts of less-viscous mafic magma. Extensive felsic lava flows are uncommon, but have travelled as far as 15 km (9.3 mi).

Ring of Fire Area of high earthquake and volcanic activity, also the circum-Pacific belt

The Ring of Fire is a major area in the basin of the Pacific Ocean where many earthquakes and volcanic eruptions occur. In a large 40,000 km (25,000 mi) horseshoe shape, it is associated with a nearly continuous series of oceanic trenches, volcanic arcs, and volcanic belts and plate movements. It has 452 volcanoes.

Basin and Range Province Geologic province extending through much of the western United States and Mexico

The Basin and Range Province is a vast physiographic region covering much of the inland Western United States and northwestern Mexico. It is defined by unique basin and range topography, characterized by abrupt changes in elevation, alternating between narrow faulted mountain chains and flat arid valleys or basins. The physiography of the province is the result of tectonic extension that began around 17 million years ago in the early Miocene epoch.

Cocos Plate young oceanic tectonic plate beneath the Pacific Ocean off the west coast of Central America

The Cocos Plate is a young oceanic tectonic plate beneath the Pacific Ocean off the west coast of Central America, named for Cocos Island, which rides upon it. The Cocos Plate was created approximately 23 million years ago when the Farallon Plate broke into two pieces, which also created the Nazca Plate. The Cocos Plate also broke into two pieces, creating the small Rivera Plate. The Cocos Plate is bounded by several different plates. To the northeast it is bounded by the North American Plate and the Caribbean Plate. To the west it is bounded by the Pacific Plate and to the south by the Nazca Plate.

Volcanic arc A chain of volcanoes formed above a subducting plate

A volcanic arc is a chain of volcanoes formed above a subducting plate, positioned in an arc shape as seen from above. Offshore volcanoes form islands, resulting in a volcanic island arc. Generally, volcanic arcs result from the subduction of an oceanic tectonic plate under another tectonic plate, and often parallel an oceanic trench. The oceanic plate is saturated with water, and volatiles such as water drastically lower the melting point of the mantle. As the oceanic plate is subducted, it is subjected to greater and greater pressures with increasing depth. This pressure squeezes water out of the plate and introduces it to the mantle. Here the mantle melts and forms magma at depth under the overriding plate. The magma ascends to form an arc of volcanoes parallel to the subduction zone.

Central America Volcanic Arc

The Central American Volcanic Arc is a chain of volcanoes which extends parallel to the Pacific coast line of the Central American Isthmus, from Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, and down to northern Panama. This volcanic arc, which has a length of 1,500 kilometres (930 mi), is formed by an active subduction zone along the western boundary of the Caribbean Plate.

Magmatism geological process

Magmatism is the emplacement of magma within and at the surface of the outer layers of a terrestrial planet, which solidifies as igneous rocks. It does so through magmatic activity or igneous activity, the production, intrusion and extrusion of magma or lava. Volcanism is the surface expression of magmatism.

Volcanism of Canada

The volcanism of Canada is represented by many types of landform including lava flows, volcanic plateaus, lava domes, cinder cones, stratovolcanoes, shield volcanoes, submarine volcanoes, calderas, diatremes, and maars, along with examples of more less common volcanic forms such as tuyas and subglacial mounds. It has a very complex volcanic history spanning from the Precambrian eon at least 3.11 billion years ago when this part of the North American continent began to form.

Volcanic belt A large volcanically active region

A volcanic belt is a large volcanically active region. Other terms are used for smaller areas of activity, such as volcanic fields. Volcanic belts are found above zones of unusually high temperature (700-1400 °C) where magma is created by partial melting of solid material in the Earth's crust and upper mantle. These areas usually form along tectonic plate boundaries at depths of 10–50 km. For example, volcanoes in Mexico and western North America are mostly in volcanic belts, such as the Trans-Mexican Volcanic Belt that extends 900 km from west to east across central-southern Mexico and the Northern Cordilleran Volcanic Province in western Canada.

Andean Volcanic Belt Volcanic belt in South America

The Andean Volcanic Belt is a major volcanic belt along the Andean cordillera in Argentina, Bolivia, Chile, Colombia, Ecuador, and Peru. It is formed as a result of subduction of the Nazca Plate and Antarctic Plate underneath the South American Plate. The belt is subdivided into four main volcanic zones which are separated by volcanic gaps. The volcanoes of the belt are diverse in terms of activity style, products, and morphology. While some differences can be explained by which volcanic zone a volcano belongs to, there are significant differences within volcanic zones and even between neighboring volcanoes. Despite being a type location for calc-alkalic and subduction volcanism, the Andean Volcanic Belt has a broad range of volcano-tectonic settings, as it has rift systems and extensional zones, transpressional faults, subduction of mid-ocean ridges and seamount chains as well as a large range of crustal thicknesses and magma ascent paths and different amounts of crustal assimilations.

Canadian Cascade Arc

The Canadian Cascade Arc, also called the Canadian Cascades, is the Canadian segment of the North American Cascade Volcanic Arc. Located entirely within the Canadian province of British Columbia, it extends from the Cascade Mountains in the south to the Coast Mountains in the north. Specifically, the southern end of the Canadian Cascades begin at the Canada–United States border. However, the specific boundaries of the northern end are not precisely known and the geology in this part of the volcanic arc is poorly understood. It is widely accepted by geologists that the Canadian Cascade Arc extends through the Pacific Ranges of the Coast Mountains. However, others have expressed concern that the volcanic arc possibly extends further north into the Kitimat Ranges, another subdivision of the Coast Mountains, and even as far north as Haida Gwaii.

Calabozos Mountain in Chile

Calabozos is a Holocene caldera in central Chile's Maule Region. Part of the Chilean Andes' volcanic segment, it is considered a member of the Southern Volcanic Zone (SVZ), one of the three distinct volcanic belts of South America. This most active section of the Andes runs along central Chile's western edge, and includes more than 70 of Chile's stratovolcanoes and volcanic fields. Calabozos lies in an extremely remote area of poorly glaciated mountains.

A continental arc is a type of volcanic arc occurring as an "arc-shape" topographic high region along a continental margin. The continental arc is formed at an active continental margin where two tectonic plates meet, and where one plate has continental crust and the other oceanic crust along the line of plate convergence, and a subduction zone develops. The magmatism and petrogenesis of continental crust are complicated: in essence, continental arcs reflect a mixture of oceanic crust materials, mantle wedge and continental crust materials.

Altiplano–Puna volcanic complex volcanic complex in Chile

The Altiplano–Puna volcanic complex, also known as APVC, is a complex of volcanic systems in the Puna of the Andes. It is located in the Altiplano area, a highland bounded by the Bolivian Cordillera Real in the east and by the main chain of the Andes, the Western Cordillera, in the west. It results from the subduction of the Nazca Plate beneath the South American Plate. Melts caused by subduction have generated the volcanoes of the Andean Volcanic Belt including the APVC. The volcanic province is located between 21° S–24° S latitude. The APVC spans the countries of Argentina, Bolivia and Chile.


Incapillo is a Pleistocene caldera, a depression formed by the collapse of a volcano, in the La Rioja province of Argentina. Part of the Argentine Andes, it is considered the southernmost volcanic centre in the Central Volcanic Zone of the Andes with Pleistocene activity. Incapillo is one of several ignimbritic or calderic systems that, along with 44 active stratovolcanoes, are part of the Central Volcanic Zone.

Jotabeche is a Miocene-Pliocene caldera in the Atacama Region of Chile. It is part of the volcanic Andes, more specifically of the extreme southern end of the Central Volcanic Zone (CVZ). This sector of the Andean Volcanic Belt contains about 44 volcanic centres and numerous more minor volcanic systems, as well as some caldera and ignimbrite systems. Jotabeche is located in a now inactive segment of the CVZ, the Maricunga Belt.

Mascota volcanic field is a volcanic field in Mexico. It is formed by cinder cones and lava domes that lie 50 kilometres (31 mi) east of Puerto Vallarta. Several other volcanic fields lie in the neighbourhood.

Naolinco volcanic field

Naolinco volcanic field is a volcanic field in Veracruz, Mexico. It lies in the region of the cities of Jalapa and Naolinco, and the town of Naolinco lies in the field.

San Borja volcanic field is a volcanic field in Baja California, northeast of the Vizcaino Peninsula. It is formed by a plateau of lava flows and a number of scoria cones. The field started erupting over twelve million years ago and has endured several changes in regional tectonics.

Aleutian subduction zone Convergence boundary between the North American Plate and the Pacific Plate, that extends from the Alaska Range to the Kamchatka Peninsula.

The Aleutian subduction zone is a ~2500 mile-long convergence boundary between the North American Plate and the Pacific Plate, that extends from the Alaska Range to the Kamchatka Peninsula. Here, the Pacific Plate is being subducted underneath the North American plate and the rate of subduction changes from west to east from 7.5 cm/yr to 5.1 cm/yr. The Aleutian subduction zone includes two prominent features, the Aleutian arc and the Aleutian trench. The island arc was created via volcanic eruptions from dehydration of the subducting slab at ~100 km depth. The trench is a narrow and deep morphology that occurs between the two converging plates as the subucting slab dives beneath the overriding plate.


  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Ferrari, Luca; Esquivel, Teresa; Manea, Vlad; Manea, Marina (2012). "The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone". Tectonophysics. 522-523: 122–149. Bibcode:2012Tectp.522..122F. doi:10.1016/j.tecto.2011.09.018.
  2. 1 2 Suter, M.; Quintero, O. (July 30, 1992). "Active Faults and State of Stress in the Central Part of the Trans-Mexican Volcanic Belt, Mexico 1. The Venta de Bravo Fault". Journal of Geophysical Research. 97 (B8): 11,983–11,993. Bibcode:1992JGR....9711983S. doi:10.1029/91jb00428.
  3. 1 2 3 4 5 6 7 Manea, Vlad; Manea, Marina; Ferrari, Luca (2013). "A geodynamical perspective on the subduction of Cocos and Rivera plates beneath Mexico and Central America". Tectonophysics. 609: 56–81. Bibcode:2013Tectp.609...56M. doi:10.1016/j.tecto.2012.12.039.
  4. 1 2 3 4 Delgado de Cantú, Gloria M. (2003). México, estructuras, política, económica y social. Pearson Educación. ISBN   978-970-26-0357-3.
  5. 1 2 3 4 5 6 Ferrari, Luca. "The Geochemical Puzzle of the Trans-Mexican Volcanic Belt: Mantle Plume, Continental Rifting, or Mantle Perturbation Induced by Subduction?".
  6. 1 2 Ego, Frederic; Veronique, Ansan (2002). "Why is the Central Trans-Mexican Volcanic Belt transtensive deformation?". Tectonophysics. 359 (1): 189–208. Bibcode:2002Tectp.359..189E. doi:10.1016/s0040-1951(02)00511-5.
  7. Garcia-Palomo, A.; Macias, J; Tolson, G; Valdez, G; Mora, J (2002). "Volcanic stratigraphy and geological evolution of the Apan region, east-central sector of the Trans-Mexican Volcanic Belt". Geofísica Internacional . 41 (2): 133–150.
  8. 1 2 Guzman, Eduardo; Zoltan, Cserna (1963). "Tectonic History of Mexico". AAPG Special Volumes: 113–129.
  9. 1 2 3 4 Ferrari, Luca; Lopez-Martinez, Margarita; Aguirre-Díaz, Gerardo; Carrasco-Núñez, Gerardo (1999). "Space-time patterns of Cenozoic arc volcanism in central Mexico: From the Sierra Madre Occidental to the Mexican Volcanic Belt". GSA. 27 (4): 303–306. Bibcode:1999Geo....27..303F. doi:10.1130/0091-7613(1999)027<0303:stpoca>;2.
  10. Alva-Valdivia, Luis; Goguitchaichvili, Avto; Ferrari, Luca; Rosas-Elguera, Jose; Fucugauchi, Jaime; Orozco, Jose (2000). "Paleomagnetic data from the Trans-Mexican Volcanic Belt: implications for tectonics and volcanic stratigraphy". Society of Geomagnetism and Earth, Planets, Space Sciences. 52 (7): 467–478. Bibcode:2000EP&S...52..467A. doi: 10.1186/bf03351651 .
  11. 1 2 3 Pérez-Campos, Xyoli; Kim, YoungHee; Huske, Allen; Davis, Paul; Clayton, Robert; Iglesias, Arturo; Pacheco, Javier; Singh, Shri; Manea, Vlad; Gurnis, Michael (2008). "Horizontal subduction and truncation of the Cocos Plate beneath central Mexico" (PDF). Geophysical Research Letters. 35 (18): L18303. Bibcode:2008GeoRL..3518303P. doi:10.1029/2008GL035127.
  12. 1 2 Ferrari, Luca (2004). "Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico". GSA. 32 (1): 77–80. Bibcode:2004Geo....32...77F. doi:10.1130/g19887.1.
  13. 1 2 3 Ferrari, Luca; Petrone, Chiara; Francalanci, Lorella (2001). "Generation of oceanic-island basalt–type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting". GSA. 29 (6): 507–510. Bibcode:2001Geo....29..507F. doi:10.1130/0091-7613(2001)029<0507:gooibt>;2.
  14. 1 2 Gómez-Tuena, A; Ferrari, L.; Orozco-Esquivel, Ma.T. (2007). "Igneous Petrogenesis of the Trans-Mexican Volcanic Belt,'". Geological Society of America Special Paper. 422 (Ch 5): 129–182. doi:10.1130/2007.2422(05).
  15. Jimenez Gonzalez, Victor Manuel (2014). Guía de Viaje del Distrito Federal (DF) [Federal District Travel Guide (DF)] (in Spanish). Solaris Comunicación. p. 39.