Trigonometric constants expressed in real radicals

Last updated
The primary solution angles in the form (cos,sin) on the unit circle are at multiples of 30 and 45 degrees. Unit circle angles color.svg
The primary solution angles in the form (cos,sin) on the unit circle are at multiples of 30 and 45 degrees.

Exact algebraic expressions for trigonometric values are sometimes useful, mainly for simplifying solutions into radical forms which allow further simplification.

Contents

All trigonometric numbers – sines or cosines of rational multiples of 360° – are algebraic numbers (solutions of polynomial equations with integer coefficients); moreover many (but not all, due to the Abel-Ruffini theorem) may be expressed in terms of radicals of complex numbers; but not all of these are expressible in terms of real radicals. When they are, they are expressible more specifically in terms of square roots.

All values of the sines, cosines, and tangents of angles at 3° increments are expressible in terms of square roots, using identities – the half-angle identity, the double-angle identity, and the angle addition/subtraction identity – and using values for 0°, 30°, 36°, and 45°. For an angle of an integer number of degrees that is not a multiple of 3° (π/60 radians), the values of sine, cosine, and tangent cannot be expressed in terms of real radicals.

According to Niven's theorem, the only rational values of the sine function for which the argument is a rational number of degrees are 0, 1/2,  1, 1/2, and −1.

According to Baker's theorem, if the value of a sine, a cosine or a tangent is algebraic, then the angle is either a rational number of degrees or a transcendental number of degrees. That is, if the angle is an algebraic, but non-rational, number of degrees, the trigonometric functions all have transcendental values.

Scope of this article

The list in this article is incomplete in several senses. First, the trigonometric functions of all angles that are integer multiples of those given can also be expressed in radicals, but some are omitted here.

Second, it is always possible to apply the half-angle formula to find an expression in radicals for a trigonometric function of one-half of any angle on the list, then half of that angle, etc.

Third, expressions in real radicals exist for a trigonometric function of a rational multiple of π if and only if the denominator of the fully reduced rational multiple is a power of 2 by itself or the product of a power of 2 with the product of distinct Fermat primes, of which the known ones are 3, 5, 17, 257, and 65537.

Fourth, this article only deals with trigonometric function values when the expression in radicals is in real radicals – roots of real numbers. Many other trigonometric function values are expressible in, for example, cube roots of complex numbers that cannot be rewritten in terms of roots of real numbers. For example, the trigonometric function values of any angle that is one-third of an angle θ considered in this article can be expressed in cube roots and square roots by using the cubic equation formula to solve

but in general the solution for the cosine of the one-third angle involves the cube root of a complex number (giving casus irreducibilis ).

In practice, all values of sines, cosines, and tangents not found in this article are approximated using the techniques described at Trigonometric tables .

Common angles

Other angles

Values outside the [0°, 45°] angle range are trivially derived from the following values, using circle axis reflection symmetry. (See List of trigonometric identities.)

In the entries below, when a certain number of degrees is related to a regular polygon, the relation is that the number of degrees in each angle of the polygon is (n  2) times the indicated number of degrees (where n is the number of sides). This is because the sum of the angles of any n-gon is 180° × (n  2) and so the measure of each angle of any regular n-gon is 180° × (n  2) ÷ n. Thus for example the entry "45°: square" means that, with n = 4, 180° ÷ n = 45°, and the number of degrees in each angle of a square is (n  2) × 45° = 90°.

0°: fundamental

1.5°: regular hecatonicosagon (120-sided polygon)

1.875°: regular enneacontahexagon (96-sided polygon)

2.25°: regular octacontagon (80-sided polygon)

2.8125°: regular hexacontatetragon (64-sided polygon)

3°: regular hexacontagon (60-sided polygon)

3.75°: regular tetracontaoctagon (48-sided polygon)

4.5°: regular tetracontagon (40-sided polygon)

5.625°: regular triacontadigon (32-sided polygon)

6°: regular triacontagon (30-sided polygon)

7.5°: regular icositetragon (24-sided polygon)

9°: regular icosagon (20-sided polygon)

11.25°: regular hexadecagon (16-sided polygon)

12°: regular pentadecagon (15-sided polygon)

15°: regular dodecagon (12-sided polygon)

18°: regular decagon (10-sided polygon) [1]

21°: sum 9° + 12°

22.5°: regular octagon

, the silver ratio

24°: sum 12° + 12°

27°: sum 12° + 15°

30°: regular hexagon

33°: sum 15° + 18°

36°: regular pentagon

[1]
where φ is the golden ratio;

39°: sum 18° + 21°

42°: sum 21° + 21°

45°: square

54°: sum 27° + 27°

60°: equilateral triangle

67.5°: sum 7.5° + 60°

72°: sum 36° + 36°

75°: sum 30° + 45°

90°: fundamental


Notes

Uses for constants

As an example of the use of these constants, consider the volume of a regular dodecahedron, where a is the length of an edge:

Using

this can be simplified to:

Derivation triangles

Regular polygon (n-sided) and its fundamental right triangle. Angles: a =
180deg/n and b =90(1 -
2/n)deg Polygontriangle.gif
Regular polygon (n-sided) and its fundamental right triangle. Angles: a = 180°/n and b =90(1  2/n

The derivation of sine, cosine, and tangent constants into radial forms is based upon the constructibility of right triangles.

Here right triangles made from symmetry sections of regular polygons are used to calculate fundamental trigonometric ratios. Each right triangle represents three points in a regular polygon: a vertex, an edge center containing that vertex, and the polygon center. An n-gon can be divided into 2n right triangles with angles of 180/n, 90  180/n, 90 degrees, for n in 3, 4, 5,

Constructibility of 3, 4, 5, and 15-sided polygons are the basis, and angle bisectors allow multiples of two to also be derived.

There are also higher constructible regular polygons: 17, 51, 85, 255, 257, 353, 449, 641, 1409, 2547, ..., 65535, 65537, 69481, 73697, ..., 4294967295.)

Calculated trigonometric values for sine and cosine

The trivial values

In degree format, sin and cos of 0, 30, 45, 60, and 90 can be calculated from their right angled triangles, using the Pythagorean theorem.

In radian format, sin and cos of π / 2n can be expressed in radical format by recursively applying the following:

and so on.
and so on.

For example:

and
and
and
and
and

and so on.

Radical form, sin and cos of π/(3 × 2n)

and
and
and
and
and
and

and so on.

Radical form, sin and cos of π/(5 × 2n)

( Therefore )
and
and
and
and
and

and so on.

Radical form, sin and cos of π/5 × 3 × 2n

cos and sin (m π / 15) in first quadrant,
from which other quadrants are computable.
m8 cos (m π / 15)8 sin (m π / 15)
1
2
4
7

Applying induction with m=1 and starting with n = 0:

and
and
and
and
and

and so on.

Radical form, sin and cos of mπ/(17 × 2n)

If , and then, depending on any integer m

For example, if m = 1

Here are the expressions simplified into the following table.

Cos and Sin (m π / 17) in first quadrant, from which other quadrants are computable.
m16 cos (m π / 17)8 sin (m π / 17)
1
2
3
4
5
6
7
8

Therefore, applying induction with m=1 and starting with n=0:

and

Radical form, sin and cos of π/(257 × 2n) and π/(65537 × 2n)

The induction above can be applied in the same way to all the remaining Fermat primes (F3 = 223 + 1 = 28 + 1 = 257 and F4 = 224 + 1 = 216 + 1 = 65537), the factors of π whose cos and sin radical expressions are known to exist but are very long to express here.

and
and

Radical form, sin and cos of π/(255 × 2n), π/(65535 × 2n) and π/(4294967295 × 2n)

D = 232 - 1 = 4,294,967,295 is the largest odd integer denominator for which radical forms for sin(π/D) and cos (π/D) are known to exist.

Using the radical form values from the sections above, and applying cos(A-B) = cosA cosB + sinA sinB, followed by induction, we get -

and
and

Therefore, using the radical form values from the sections above, and applying cos(A-B) = cosA cosB + sinA sinB, followed by induction, we get -

and
and

Finally, using the radical form values from the sections above, and applying cos(A-B) = cosA cosB + sinA sinB, followed by induction, we get -

and
and

The radical form expansion of the above is very large, hence expressed in the simpler form above.

n×π/(5 × 2m)

Chord(36deg) =
a/b =
1/ph, i.e., the reciprocal of the golden ratio, from Ptolemy's theorem Ptolemy Pentagon.svg
Chord(36°) = a/b = 1/φ, i.e., the reciprocal of the golden ratio, from Ptolemy's theorem

Geometrical method

Applying Ptolemy's theorem to the cyclic quadrilateral ABCD defined by four successive vertices of the pentagon, we can find that:

which is the reciprocal 1/φ of the golden ratio. crd is the chord function,

(See also Ptolemy's table of chords.)

Thus

(Alternatively, without using Ptolemy's theorem, label as X the intersection of AC and BD, and note by considering angles that triangle AXB is isosceles, so AX = AB = a. Triangles AXD and CXB are similar, because AD is parallel to BC. So XC = a·(a/b). But AX + XC = AC, so a + a2/b = b. Solving this gives a/b = 1/φ, as above).

Similarly

so

n×π/20

9° is 45  36, and 27° is 45  18; so we use the subtraction formulas for sine and cosine.

n×π/30

6° is 36  30, 12° is 30  18, 24° is 54  30, and 42° is 60  18; so we use the subtraction formulas for sine and cosine.

n×π/60

3° is 18  15, 21° is 36  15, 33° is 18 + 15, and 39° is 54  15, so we use the subtraction (or addition) formulas for sine and cosine.

Strategies for simplifying expressions

Rationalizing the denominator

If the denominator is a square root, multiply the numerator and denominator by that radical. If the denominator is the sum or difference of two terms, multiply the numerator and denominator by the conjugate of the denominator. The conjugate is the identical, except the sign between the terms is changed. Sometimes the denominator needs to be rationalized more than once.

Splitting a fraction in two

Sometimes it helps to split the fraction into the sum of two fractions and then simplify both separately.

Squaring and taking square roots

If there is a complicated term, with only one kind of radical in a term, this plan may help. Square the term, combine like terms, and take the square root. This may leave a big radical with a smaller radical inside, but it is often better than the original.

Simplifying nested radical expressions

In general nested radicals cannot be reduced. But the radical

with a, b, and c rational, can be reduced if

is rational. In this case both

are rational, and we have

For example,

See also

Related Research Articles

Ellipse Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. As such, it generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

Trigonometric functions Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal unit vectors. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis.

Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.

Decagon shape with ten sides

In geometry, a decagon is a ten-sided polygon or 10-gon. The total sum of the interior angles of a simple decagon is 1440°.

In Euclidean geometry, a regular polygon is a polygon that is equiangular and equilateral. Regular polygons may be either convex or star. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed.

Square root of 2 Unique positive real number which when multiplied by itself gives 2

The square root of 2 is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as or , and is an algebraic number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

Inverse trigonometric functions arcsin, arccos, arctan, etc

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

Spherical trigonometry

Spherical trigonometry is the branch of spherical geometry that deals with the relationships between trigonometric functions of the sides and angles of the spherical polygons defined by a number of intersecting great circles on the sphere. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and navigation.

Tangent half-angle formula Relates the tangent of half of an angle to trigonometric functions of the entire angle

In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle onto a line. Among these formulas are the following:

Sine and cosine trigonometric functions of an angle

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle, to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

The main trigonometric identities between trigonometric functions are proved, using mainly the geometry of the right triangle. For greater and negative angles, see Trigonometric functions.

Differentiation of trigonometric functions Mathematical process of finding the derivative of a trigonometric function

The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin′(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.

Steiner ellipse

In geometry, the Steiner ellipse of a triangle, also called the Steiner circumellipse to distinguish it from the Steiner inellipse, is the unique circumellipse whose center is the triangle's centroid. Named after Jakob Steiner, it is an example of a circumconic. By comparison the circumcircle of a triangle is another circumconic that touches the triangle at its vertices, but is not centered at the triangle's centroid unless the triangle is equilateral.

Pentagon shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

Solution of triangles is the main trigonometric problem of finding the characteristics of a triangle, when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

In integral calculus, the Weierstrass substitution or tangent half-angle substitution is a method for evaluating integrals, which converts a rational function of trigonometric functions of into an ordinary rational function of by setting . No generality is lost by taking these to be rational functions of the sine and cosine. The general transformation formula is

Heptagonal triangle

A heptagonal triangle is an obtuse scalene triangle whose vertices coincide with the first, second, and fourth vertices of a regular heptagon. Thus its sides coincide with one side and the adjacent shorter and longer diagonals of the regular heptagon. All heptagonal triangles are similar, and so they are collectively known as the heptagonal triangle. Its angles have measures and and it is the only triangle with angles in the ratios 1:2:4. The heptagonal triangle has various remarkable properties.

References

  1. 1 2 Bradie, Brian (Sep 2002). "Exact values for the sine and cosine of multiples of 18°: A geometric approach". The College Mathematics Journal. 33 (4): 318–319. doi:10.2307/1559057. JSTOR   1559057.
Weisstein, Eric W. "Trigonometry angles". MathWorld .