V band

Last updated
IEEE V band
Frequency range
40 – 75 GHz
Wavelength range
7.5 – 4 mm
Related bands

The V band ("vee-band") is a standard designation by the Institute of Electrical and Electronic Engineers (IEEE) for a band of frequencies in the microwave portion of the electromagnetic spectrum ranging from 40 to 75  gigahertz (GHz). [1] [2] The V band is not heavily used, except for millimeter wave radar research and other kinds of scientific research. It should not be confused with the 6001000 MHz range of Band V (Band Five) of the UHF frequency range.

Frequency is the number of occurrences of a repeating event per unit of time. It is also referred to as temporal frequency, which emphasizes the contrast to spatial frequency and angular frequency. The period is the duration of time of one cycle in a repeating event, so the period is the reciprocal of the frequency. For example: if a newborn baby's heart beats at a frequency of 120 times a minute, its period—the time interval between beats—is half a second. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light.

Microwave form of electromagnetic radiation

Microwaves are a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter; with frequencies between 300 MHz (1 m) and 300 GHz (1 mm). Different sources define different frequency ranges as microwaves; the above broad definition includes both UHF and EHF bands. A more common definition in radio engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths and photon energies.


The V band is also used for high capacity terrestrial millimeter wave communications systems. In the United States, the Federal Communications Commission has allocated the frequency band from 57 to 71 GHz for unlicensed wireless systems. [3] These systems are primarily used for high capacity, short distance (less than 1 mile) communications. In addition, frequencies at 70, 80, and 90 GHz have been allocated as "lightly licensed" bands for multi-gigabit wireless communications. All communications links in the V band require unobstructed line of sight between the transmit and receive point, and rain fade must be taken into account when performing link budget analysis.

Federal Communications Commission independent agency of the United States government

The Federal Communications Commission (FCC) is an independent agency of the United States government created by statute to regulate interstate communications by radio, television, wire, satellite, and cable. The FCC serves the public in the areas of broadband access, fair competition, radio frequency use, media responsibility, public safety, and homeland security.

Rain fade refers primarily to the absorption of a microwave radio frequency (RF) signal by atmospheric rain, snow, or ice, and losses which are especially prevalent at frequencies above 11 GHz. It also refers to the degradation of a signal caused by the electromagnetic interference of the leading edge of a storm front. Rain fade can be caused by precipitation at the uplink or downlink location. However, it does not need to be raining at a location for it to be affected by rain fade, as the signal may pass through precipitation many miles away, especially if the satellite dish has a low look angle. From 5 to 20 percent of rain fade or satellite signal attenuation may also be caused by rain, snow, or ice on the uplink or downlink antenna reflector, radome or feed horn. Rain fade is not limited to satellite uplinks or downlinks, it also can affect terrestrial point to point microwave links.

A link budget is an accounting of all of the gains and losses from the transmitter, through the medium to the receiver in a telecommunication system. It accounts for the attenuation of the transmitted signal due to propagation, as well as the antenna gains and feedline and other losses. Randomly varying channel gains such as fading are taken into account by adding some margin depending on the anticipated severity of its effects. The amount of margin required can be reduced by the use of mitigating techniques such as antenna diversity or frequency hopping.


On Dec. 15, 1995 the V band at 60 GHz was used by the world's first crosslink communication between satellites in a constellation. This communication was between the U.S. Milstar 1 and Milstar 2 military satellites. [4] 60 GHz is attractive for secure satellite crosslinks because it allows for high data rates, narrow beams and, lying in a strong absorption band of oxygen, provides protection against intercept by ground-based adversaries.

Milstar constellation of American military satellites

Milstar is a constellation of military communications satellites in geostationary orbit, which are operated by the United States Air Force, and provide secure and jam-resistant worldwide communications to meet the requirements of the Armed Forces of the United States. Six spacecraft were launched between 1994 and 2003, of which five are operational; the third launch failed, both damaging the satellite and leaving it in an unusable orbit.

Absorption band

According to quantum mechanics, atoms and molecules can only hold certain defined quantities of energy, or exist in specific states. When such quanta of electromagnetic radiation are emitted or absorbed by an atom or molecule, the energy of the radiation changes the state of the atom or molecule from an initial state to a final state. An absorption band is a range of wavelengths, frequencies or energies in the electromagnetic spectrum which are characteristic of a particular transition from initial to final state in a substance.

Oxygen Chemical element with atomic number 8

Oxygen is a chemical element with symbol O and atomic number 8. It is a member of the chalcogen group on the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O
. Diatomic oxygen gas constitutes 20.8% of the Earth's atmosphere. As compounds including oxides, the element makes up almost half of the Earth's crust.

Very short range Wi-Fi

The WiGig standard IEEE 802.11ad and IEEE 802.11ay utilize the 60 GHz (EHF microwave) spectrum with data transfer rates of up to 7 Gbit/s for very short ranges of up to 10 metres (33 ft) [5]

WiGig, alternatively known as 60GHz Wi-Fi, refers to a set of 60 GHz wireless network protocols. It include the current IEEE 802.11ad standard and also the upcoming IEEE 802.11ay standard.

IEEE 802.11ad is an amendment to the IEEE 802.11 wireless networking standard, developed to provide a Multiple Gigabit Wireless System (MGWS) standard at 60 GHz frequency, and is a networking standard for WiGig networks. Because it uses the V band of milimeter wave (mmWave) frequency, the range of IEEE 802.11ad communication would be rather limited compared to other conventional Wi-Fi systems. However, the high frequency allows it to use more bandwidth which in turn enables the transmission of data at high data rates up to multiple gigabits per second, enabling usage scenarios like transmission of uncompressed UHD video over the wireless network.

IEEE 802.11ay is a proposed enhancement to the current technical standards for wireless networks. It is the follow-up of 802.11ad adding four times the bandwidth and adding MIMO up to 4 streams. It will be the second WiGig standard.

Wireless broadband

Internet service providers are looking for ways to expand gigabit high-speed services to their customers. These can be achieved through fiber to the premises broadband network architecture, or a more affordable alternative using fixed wireless in the last mile in combination with the fiber networks in the middle mile in order to reduce the costs of trenching fiber optic cables to the users. In the United States, V band is unlicensed. This makes V band an appealing choice to be used as fixed wireless access for gigabit services to connect to homes and businesses. [6]

Internet service provider organization that provides access to the Internet

An Internet service provider (ISP) is an organization that provides services for accessing, using, or participating in the Internet. Internet service providers may be organized in various forms, such as commercial, community-owned, non-profit, or otherwise privately owned.

The gigabit is a multiple of the unit bit for digital information or computer storage. The prefix giga (symbol G) is defined in the International System of Units (SI) as a multiplier of 109 (1 billion, short scale), and therefore

Fiber to the <i>x</i> any broadband network architecture using optical fiber to provide all or part of the local loop used for last mile telecommunications

Fiber to the x (FTTX) or fiber in the loop is a generic term for any broadband network architecture using optical fiber to provide all or part of the local loop used for last mile telecommunications. As fiber optic cables are able to carry much more data than copper cables, especially over long distances, copper telephone networks built in the 20th century are being replaced by fiber.

Satellite constellations

As of March 2017, several US companies—Boeing, SpaceX, OneWeb, Telesat, O3b Networks and Theia Holdings—have each filed with the US regulatory authorities "plans to field constellations of V-band satellites in non-geosynchronous orbits to provide communications services," an electromagnetic spectrum that had not previously been "heavily employed for commercial communications services." [7]

Boeing Aerospace and defense manufacturer in the United States

The Boeing Company is an American multinational corporation that designs, manufactures, and sells airplanes, rotorcraft, rockets, satellites, and missiles worldwide. The company also provides leasing and product support services. Boeing is among the largest global aircraft manufacturers; it is the fifth-largest defense contractor in the world based on 2017 revenue, and is the largest exporter in the United States by dollar value. Boeing stock is included in the Dow Jones Industrial Average.

SpaceX American aerospace company

Space Exploration Technologies Corp., doing business as SpaceX, is a private American aerospace manufacturer and space transportation services company headquartered in Hawthorne, California. It was founded in 2002 by entrepreneur Elon Musk with the goal of reducing space transportation costs and enabling the colonization of Mars. SpaceX has since developed the Falcon launch vehicle family and the Dragon spacecraft family, which both currently deliver payloads into Earth orbit.

OneWeb global communications company

OneWeb, formerly known as WorldVu Satellites, is a global communications company founded by Greg Wyler. The company is headquartered in London, United Kingdom and was founded in Arlington, Virginia, USA and plans to launch the OneWeb satellite constellation, a network of more than 900 low Earth orbit microsatellites, starting on February 27, 2019.

Related Research Articles

The industrial, scientific and medical (ISM) radio bands are radio bands reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than telecommunications. Examples of applications in these bands include radio-frequency process heating, microwave ovens, and medical diathermy machines. The powerful emissions of these devices can create electromagnetic interference and disrupt radio communication using the same frequency, so these devices were limited to certain bands of frequencies. In general, communications equipment operating in these bands must tolerate any interference generated by ISM applications, and users have no regulatory protection from ISM device operation.

Ultra high frequency radio waves

Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter. Radio waves with frequencies above the UHF band fall into the super-high frequency (SHF) or microwave frequency range. Lower frequency signals fall into the VHF or lower bands. UHF radio waves propagate mainly by line of sight; they are blocked by hills and large buildings although the transmission through building walls is strong enough for indoor reception. They are used for television broadcasting, cell phones, satellite communication including GPS, personal radio services including Wi-Fi and Bluetooth, walkie-talkies, cordless phones, and numerous other applications.

Wireless local loop (WLL), is the use of a wireless communications link as the "last mile / first mile" connection for delivering plain old telephone service (POTS) or Internet access to telecommunications customers. Various types of WLL systems and technologies exist.

Wireless Internet service provider

A wireless Internet service provider (WISP) is an Internet service provider with a network based on wireless networking. Technology may include commonplace Wi-Fi wireless mesh networking, or proprietary equipment designed to operate over open 900 MHz, 2.4 GHz, 4.9, 5, 24, and 60 GHz bands or licensed frequencies in the UHF band, LMDS, and other bands from 6Ghz to 80Ghz.

WiMAX wireless broadband standard

WiMAX is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide multiple physical layer (PHY) and Media Access Control (MAC) options.

The S band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a part of the microwave band of the electromagnetic spectrum covering frequencies from 2 to 4 gigahertz (GHz). Thus it crosses the conventional boundary between the UHF and SHF bands at 3.0 GHz. The S band is used by airport surveillance radar for air traffic control, weather radar, surface ship radar, and some communications satellites, especially those used by NASA to communicate with the Space Shuttle and the International Space Station. The 10 cm radar short-band ranges roughly from 1.55 to 5.2 GHz. The S band also contains the 2.4–2.483 GHz ISM band, widely used for low power unlicensed microwave devices such as cordless phones, wireless headphones (Bluetooth), wireless networking (WiFi), garage door openers, keyless vehicle locks, baby monitors as well as for medical diathermy machines and microwave ovens. India’s regional satellite navigation network (IRNSS) broadcasts on 2.483778 to 2.500278 GHz.

Extremely high frequency radio waves

Extremely high frequency (EHF) is the International Telecommunication Union (ITU) designation for the band of radio frequencies in the electromagnetic spectrum from 30 to 300 gigahertz (GHz). It lies between the super high frequency band, and the far infrared band, the lower part of which is also referred to as the terahertz gap. Radio waves in this band have wavelengths from ten to one millimetre, so it is also called the millimetre band and radiation in this band is called millimetre waves, sometimes abbreviated MMW or mmW. Millimetre-length electromagnetic waves were first investigated in the 1890s by Indian scientist Jagadish Chandra Bose.

IEEE 802.11  – or more correctly IEEE 802.11-1997 or IEEE 802.11-1999 – refer to the original version of the IEEE 802.11 wireless networking standard released in 1997 and clarified in 1999. Most of the protocols described by this early version are rarely used today.

IEEE 802.11b-1999 or 802.11b, is an amendment to the IEEE 802.11 wireless networking specification that extends throughput up to 11 Mbit/s using the same 2.4GHz band. A related amendment was incorporated into the IEEE 802.11-2007 standard.

IEEE 802.11g-2003 or 802.11g is an amendment to the IEEE 802.11 specification that extended throughput to up to 54 Mbit/s using the same 2.4 GHz band as 802.11b. This specification under the marketing name of Wi-Fi has been implemented all over the world. The 802.11g protocol is now Clause 19 of the published IEEE 802.11-2007 standard, and Clause 19 of the published IEEE 802.11-2012 standard.

Gi-Fi or gigabit wireless refers to a wireless communication at a data rate of more than one billion bits (gigabit) per second.

Gigabit Wireless

Gigabit Wireless is the name given to wireless communication systems whose data transfer speeds exceed reach or exceed one gigabit per second. Such speeds are achieved with complex modulations of the signal, such as quadrature amplitude modulation (QAM) or signals spanning many frequencies. When a signal spans many frequencies, physicists refer that a wide bandwidth signal. In the communication industry, many Wireless Internet service providers and cell phone companies deploy wireless radio frequency antennas to backhaul core networks, connect businesses, and even individual residential homes.

Wireless Gigabit Alliance trade association

The Wireless Gigabit Alliance was a trade association that developed and promoted the adoption of multi-gigabit per second speed wireless communications technology "WiGig" operating over the unlicensed 60 GHz frequency band. The alliance was subsumed by the Wi-Fi Alliance in March 2013.

IEEE 802.11ah is a wireless networking protocol published in 2017 to be called Wi-Fi HaLow as an amendment of the IEEE 802.11-2007 wireless networking standard. It uses 900 MHz license exempt bands to provide extended range Wi-Fi networks, compared to conventional Wi-Fi networks operating in the 2.4 GHz and 5 GHz bands. It also benefits from lower energy consumption, allowing the creation of large groups of stations or sensors that cooperate to share signals, supporting the concept of the Internet of Things (IoT). The protocol's low power consumption competes with Bluetooth and has the added benefit of higher data rates and wider coverage range.

C band (IEEE) 4-8GHz

The C band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a portion of the electromagnetic spectrum in the microwave range of frequencies ranging from 4.0 to 8.0 gigahertz (GHz); however, this definition is the one used by radar manufacturers and users, not necessarily by microwave radio telecommunications users. The C band is used for many satellite communications transmissions, some Wi-Fi devices, some cordless telephones as well as some surveillance and weather radar systems.


  1. Leonid A. Belov; Sergey M. Smolskiy; Victor N. Kochemasov (2012). Handbook of RF, Microwave, and Millimeter-Wave Components. Artech House. pp. 27–28. ISBN   978-1-60807-209-5.
  2. George Kizer (22 May 2013). Digital Microwave Communication: Engineering Point-to-Point Microwave Systems. John Wiley & Sons. p. 62. ISBN   978-1-118-63680-0.
  3. FCC Rules, Part 15.255
  4. "Milstar II at Boeing Integrated Defense Systems". Archived from the original on 2012-07-20. Retrieved 2008-04-25.
  5. "IEEE 802.11ad Microwave Wi-Fi / WiGig Tutorial". Radio-Electronics.com. Retrieved 16 January 2018.
  6. Alleven, Monica (25 October 2017). "60 GHz band particularly appealing for fixed wireless: report". Fierce Wireless. Retrieved 16 January 2018.
  7. http://spacenews.com/fcc-gets-five-new-applications-for-non-geostationary-satellite-constellations/