Valine

Last updated
Valine
L-valine-2D-skeletal.png
Skeletal formula of neutral valine
Valine at 7.4 pH.png
Zwitterionic valine
Valine-from-xtal-3D-bs-17.png
Valine-from-xtal-3D-sf.png
Names
IUPAC name
Valine
Other names
2-Amino-3-methylbutanoic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.000.703 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • L:200-773-6
KEGG
PubChem CID
UNII
  • InChI=1S/C5H11NO2/c1-3(2)4(6)5(7)8/h3-4H,6H2,1-2H3,(H,7,8)/t4-/m0/s1 Yes check.svgY
    Key: KZSNJWFQEVHDMF-BYPYZUCNSA-N Yes check.svgY
  • D/L:Key: KZSNJWFQEVHDMF-UHFFFAOYSA-N
  • D:Key: KZSNJWFQEVHDMF-SCSAIBSYSA-N
  • L:CC(C)[C@@H](C(=O)O)N
  • L Zwitterion:CC(C)[C@@H](C(=O)[O-])[NH3+]
Properties [1]
C5H11NO2
Molar mass 117.148 g·mol−1
Density 1.316 g/cm3
Melting point 298 °C (568 °F; 571 K) (decomposition)
soluble, 85 g/l [2]
Acidity (pKa)2.32 (carboxyl), 9.62 (amino) [3]
-74.3·10−6 cm3/mol
Supplementary data page
Valine (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Valine (symbol Val or V) [4] is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO form under biological conditions), and a side chain isopropyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. It is encoded by all codons starting with GU (GUU, GUC, GUA, and GUG).

Contents

History and etymology

Valine was first isolated from casein in 1901 by Hermann Emil Fischer. [5] The name valine comes from valeric acid, which in turn is named after the plant valerian due to the presence of the acid in the roots of the plant. [6] [7]

Nomenclature

According to IUPAC, carbon atoms forming valine are numbered sequentially starting from 1 denoting the carboxyl carbon, whereas 4 and 4' denote the two terminal methyl carbons. [8]

Metabolism

Source and biosynthesis

Valine, like other branched-chain amino acids, is synthesized by plants, but not by animals. [9] It is therefore an essential amino acid in animals, and needs to be present in the diet. Adult humans require about 24 mg/kg body weight daily. [10] It is synthesized in plants and bacteria via several steps starting from pyruvic acid. The initial part of the pathway also leads to leucine. The intermediate α-ketoisovalerate undergoes reductive amination with glutamate. Enzymes involved in this biosynthesis include: [11]

  1. Acetolactate synthase (also known as acetohydroxy acid synthase)
  2. Acetohydroxy acid isomeroreductase
  3. Dihydroxyacid dehydratase
  4. Valine aminotransferase

Degradation

Like other branched-chain amino acids, the catabolism of valine starts with the removal of the amino group by transamination, giving alpha-ketoisovalerate, an alpha-keto acid, which is converted to isobutyryl-CoA through oxidative decarboxylation by the branched-chain α-ketoacid dehydrogenase complex. [12] This is further oxidised and rearranged to succinyl-CoA, which can enter the citric acid cycle.

Synthesis

Racemic valine can be synthesized by bromination of isovaleric acid followed by amination of the α-bromo derivative [13]

HO2CCH2CH(CH3)2 + Br2 → HO2CCHBrCH(CH3)2 + HBr
HO2CCHBrCH(CH3)2 + 2 NH3 → HO2CCH(NH2)CH(CH3)2 + NH4Br

Medical significance

Insulin resistance

Valine, like other branched-chain amino acids, is associated with weight loss and decreased insulin resistance: higher levels of valine are observed in the blood of diabetic mice, rats, and humans. [14] Mice fed a valine diet for one day have improved insulin sensitivity, and feeding of a valine diet for one week significantly decreases blood glucose levels. [15] In diet-induced obese and insulin resistant mice, a diet with decreased levels of valine and the other branched-chain amino acids results in a rapid reversal of the adiposity and an improvement in glucose-level control. [16] The valine catabolite 3-hydroxyisobutyrate promotes insulin sensitivity in mice by stimulating fatty acid uptake into muscle and lipid reduction. [17] In humans, a protein rich diet decreases fasting blood glucose levels. [18]

Hematopoietic stem cells

Dietary valine is essential for hematopoietic stem cell (HSC) self-renewal, as demonstrated by experiments in mice. [19] Dietary valine restriction selectively depletes long-term repopulating HSC in mouse bone marrow. Successful stem cell transplantation was achieved in mice without irradiation after 3 weeks on a valine restricted diet. Long-term survival of the transplanted mice was achieved when valine was returned to the diet gradually over a 2-week period to avoid refeeding syndrome.

See also

Related Research Articles

<span class="mw-page-title-main">Tryptophan</span> Chemical compound

Tryptophan is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic beta carbon substituent. It is essential in humans, meaning that the body cannot synthesize it and it must be obtained from the diet. Tryptophan is also a precursor to the neurotransmitter serotonin, the hormone melatonin, and vitamin B3. It is encoded by the codon UGG.

<span class="mw-page-title-main">Methionine</span> Sulfur-containing amino acid

Methionine is an essential amino acid in humans. As the precursor of other amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical role in the metabolism and health of many species, including humans. It is encoded by the codon AUG.

<span class="mw-page-title-main">Alanine</span> Α-amino acid that is used in the biosynthesis of proteins

Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side chain. Consequently, its IUPAC systematic name is 2-aminopropanoic acid, and it is classified as a nonpolar, aliphatic α-amino acid. Under biological conditions, it exists in its zwitterionic form with its amine group protonated (as −NH3+) and its carboxyl group deprotonated (as −CO2). It is non-essential to humans as it can be synthesised metabolically and does not need to be present in the diet. It is encoded by all codons starting with GC (GCU, GCC, GCA, and GCG).

<span class="mw-page-title-main">Isoleucine</span> Chemical compound

Isoleucine is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group, an α-carboxylic acid group, and a hydrocarbon side chain with a branch. It is classified as a non-polar, uncharged, branched-chain, aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it, and must be ingested in our diet. Isoleucine is synthesized from pyruvate employing leucine biosynthesis enzymes in other organisms such as bacteria. It is encoded by the codons AUU, AUC, and AUA.

<span class="mw-page-title-main">Leucine</span> Chemical compound

Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG.

<span class="mw-page-title-main">Threonine</span> Amino acid

Threonine is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group, a carboxyl group, and a side chain containing a hydroxyl group, making it a polar, uncharged amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Threonine is synthesized from aspartate in bacteria such as E. coli. It is encoded by all the codons starting AC.

Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis occurs mainly in the liver and, to a lesser extent, in the cortex of the kidneys. It is one of two primary mechanisms – the other being degradation of glycogen (glycogenolysis) – used by humans and many other animals to maintain blood sugar levels, avoiding low levels (hypoglycemia). In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc. In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise.

A low-protein diet is a diet in which people decrease their intake of protein. A low-protein diet is used as a therapy for inherited metabolic disorders, such as phenylketonuria and homocystinuria, and can also be used to treat kidney or liver disease. Low protein consumption appears to reduce the risk of bone breakage, presumably through changes in calcium homeostasis. Consequently, there is no uniform definition of what constitutes low-protein, because the amount and composition of protein for an individual with phenylketonuria would differ substantially from one with homocystinuria or tyrosinemia.

Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds.

<span class="mw-page-title-main">Branched-chain amino acid</span> Amino acid with a branched carbon chain

A branched-chain amino acid (BCAA) is an amino acid having an aliphatic side-chain with a branch. Among the proteinogenic amino acids, there are three BCAAs: leucine, isoleucine, and valine. Non-proteinogenic BCAAs include 2-aminoisobutyric acid.

De novo synthesis refers to the synthesis of complex molecules from simple molecules such as sugars or amino acids, as opposed to recycling after partial degradation. For example, nucleotides are not needed in the diet as they can be constructed from small precursor molecules such as formate and aspartate. Methionine, on the other hand, is needed in the diet because while it can be degraded to and then regenerated from homocysteine, it cannot be synthesized de novo.

Starvation response in animals is a set of adaptive biochemical and physiological changes, triggered by lack of food or extreme weight loss, in which the body seeks to conserve energy by reducing the amount of calories it burns.

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids.

In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes called fatty acid synthases. This process takes place in the cytoplasm of the cell. Most of the acetyl-CoA which is converted into fatty acids is derived from carbohydrates via the glycolytic pathway. The glycolytic pathway also provides the glycerol with which three fatty acids can combine to form triglycerides, the final product of the lipogenic process. When only two fatty acids combine with glycerol and the third alcohol group is phosphorylated with a group such as phosphatidylcholine, a phospholipid is formed. Phospholipids form the bulk of the lipid bilayers that make up cell membranes and surrounds the organelles within the cells.

<span class="mw-page-title-main">Acetolactate synthase</span> Class of enzymes

The acetolactate synthase (ALS) enzyme is a protein found in plants and micro-organisms. ALS catalyzes the first step in the synthesis of the branched-chain amino acids.

<span class="mw-page-title-main">Ketogenic amino acid</span> Type of amino acid

A ketogenic amino acid is an amino acid that can be degraded directly into acetyl-CoA, which is the precursor of ketone bodies and myelin, particularly during early childhood, when the developing brain requires high rates of myelin synthesis. This is in contrast to the glucogenic amino acids, which are converted into glucose. Ketogenic amino acids are unable to be converted to glucose as both carbon atoms in the ketone body are ultimately degraded to carbon dioxide in the citric acid cycle.

<span class="mw-page-title-main">Branched-chain amino acid aminotransferase</span> Aminotransferase enzyme

Branched-chain amino acid aminotransferase (BCAT), also known as branched-chain amino acid transaminase, is an aminotransferase enzyme (EC 2.6.1.42) which acts upon branched-chain amino acids (BCAAs). It is encoded by the BCAT2 gene in humans. The BCAT enzyme catalyzes the conversion of BCAAs and α-ketoglutarate into branched chain α-keto acids and glutamate.

<span class="mw-page-title-main">FGF21</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor 21 is a liver-secreted peptide hormone that in humans is encoded by the FGF21 gene. Together with FGF19 and FGF23, this protein is a member of the endocrine subgroup within the fibroblast growth factor (FGF) family. FGF21 is a potent, extracellularly acting metabolic regulator, whose action was discovered through in vitro phenotypic screeninig and diet manipulation studies in rodents., unlike canonical growth-stimulating FGFs known to stimulate mitosis, differentiation and angiogenesis in their target tissues, FGF21 exerts its action by activating FGF21 receptors located in the cell membrane of target cells. Each FGF21 receptor is composed of a transmembrane FGF receptor protein, and its complexing co-receptor β-Klotho. Loss of β-Klotho abolishes all effects of FGF21 in vitro and in vivo. In addition to its action as a hormone, FGF21 may be able to act in an autocrine fashion, or possibly also in a paracrine manner in the pancreas.

Norvaline (abbreviated as Nva) is an amino acid with the formula CH3(CH2)2CH(NH2)CO2H. The compound is a structural analog of valeric acid and also an isomer of the more common amino acid valine. Like most other α-amino acids, norvaline is chiral. It is a white, water-soluble solid.

References

  1. Weast RC, ed. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. p. C-569. ISBN   0-8493-0462-8.
  2. "Physicochemical Information". emdmillipore. 2022. Retrieved 17 November 2022.{{cite web}}: CS1 maint: url-status (link)
  3. Dawson RM, Elliott DC, Elliott WH, Jones KM, eds. (1959). Data for Biochemical Research. Oxford: Clarendon Press. ASIN   B000S6TFHA. OCLC   859821178.
  4. "Nomenclature and Symbolism for Amino Acids and Peptides". IUPAC-IUB Joint Commission on Biochemical Nomenclature. 1983. Archived from the original on 9 October 2008. Retrieved 5 March 2018.
  5. "Valine". Encyclopædia Britannica Online. Retrieved 6 December 2015.
  6. "Valine". Merriam-Webster Online Dictionary. Retrieved 6 December 2015.
  7. "Valeric acid". Merriam-Webster Online Dictionary. Retrieved 6 December 2015.
  8. Jones JH, ed. (1985). Amino Acids, Peptides and Proteins. Specialist Periodical Reports. Vol. 16. London: Royal Society of Chemistry. p. 389. ISBN   978-0-85186-144-9.
  9. Basuchaudhuri P (2016). Nitrogen metabolism in rice. Boca Raton, Florida: CRC Press. p. 159. ISBN   978-1-4987-4668-7. OCLC   945482059.
  10. Institute of Medicine (2002). "Protein and Amino Acids". Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press. pp. 589–768. doi:10.17226/10490. ISBN   978-0-309-08537-3.
  11. Lehninger, Albert L.; Nelson, David L.; Cox, Michael M. (2000). Principles of Biochemistry (3rd ed.). New York: W. H. Freeman. ISBN   1-57259-153-6..
  12. Mathews CK (2000). Biochemistry. Van Holde, K. E., Ahern, Kevin G. (3rd ed.). San Francisco, Calif.: Benjamin Cummings. p. 776. ISBN   978-0-8053-3066-3. OCLC   42290721.
  13. Marvel CS (1940). "dl-Valine". Organic Syntheses . 20: 106.; Collective Volume, vol. 3, p. 848.
  14. Lynch CJ, Adams SH (December 2014). "Branched-chain amino acids in metabolic signalling and insulin resistance". Nature Reviews. Endocrinology. 10 (12): 723–36. doi:10.1038/nrendo.2014.171. PMC   4424797 . PMID   25287287.
  15. Xiao F, Yu J, Guo Y, Deng J, Li K, Du Y, et al. (June 2014). "Effects of individual branched-chain amino acids on insulin sensitivity and glucose metabolism in mice". Metabolism. 63 (6): 841–50. doi:10.1016/j.metabol.2014.03.006. PMID   24684822.
  16. Cummings NE, Williams EM, Kasza I, Konon EN, Schaid MD, Schmidt BA, et al. (February 2018). "Restoration of metabolic health by increased amino acid intake". The Journal of Physiology. 596 (4): 623–645. doi:10.1113/JP275075. PMC   5813603 . PMID   29266268.
  17. Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, et al. (April 2016). "A branched-chain amino acid metabolite drives vascular fatty acid transport and limits insulin resistance". Nature Medicine. 22 (4): 421–6. doi:10.1038/nm.4057. PMC   4949205 . PMID   26950361.
  18. Fontana L, Cummings NE, Arriola Apelo SI, Neuman JC, Kasza I, Schmidt BA, et al. (July 2016). "Branch-Chain Amino Acids Improves Metabolic Health". Cell Reports. 16 (2): 520–530. doi:10.1016/j.celrep.2016.05.092. PMC   4947548 . PMID   27346343.
  19. Taya Y, Ota Y, Wilkinson AC, Kanazawa A, Watarai H, Kasai M, et al. (December 2016). "Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation". Science. 354 (6316): 1152–1155. Bibcode:2016Sci...354.1152T. doi:10.1126/science.aag3145. PMID   27934766. S2CID   45815137.