Wave radar

Last updated
Measuring ocean waves by use of marine radars. WaveMeasurementsShips.png
Measuring ocean waves by use of marine radars.

Wind waves can be measured by several radar remote sensing techniques. Several instruments based on a variety of different concepts and techniques are available, and these are all often called wave radars. This article (see also Grønlie 2004), gives a brief description of the most common ground-based radar remote sensing techniques.

Wind wave Surface waves generated by wind on open water

In fluid dynamics, wind waves, or wind-generated waves, are water surface waves that occur on the free surface of the oceans and other bodies. They result from the wind blowing over an area of fluid surface. Waves in the oceans can travel thousands of miles before reaching land. Wind waves on Earth range in size from small ripples, to waves over 100 ft (30 m) high.

Radar Object detection system using radio waves

Radar is a detection system that uses radio waves to determine the range, angle, or velocity of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the object(s). Radio waves from the transmitter reflect off the object and return to the receiver, giving information about the object's location and speed.

Remote sensing Acquisition of information at a significant distance from the subject

Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object and thus in contrast to on-site observation, especially the Earth. Remote sensing is used in numerous fields, including geography, land surveying and most Earth science disciplines ; it also has military, intelligence, commercial, economic, planning, and humanitarian applications.

Contents

Instruments based on radar remote sensing techniques have become of particular interest in applications where it is important to avoid direct contact with the water surface and avoid structural interference. A typical case is wave measurements from an offshore platform in deep water, where swift currents could make mooring a wave buoy enormously difficult. Another interesting case is a ship under way, where having instruments in the sea is highly impractical and interference from the ship's hull must be avoided.

Radar remote sensing

Terms and definitions

Basically there are two different classes of radar remote sensors for ocean waves.

Microwave radars may be used in two different modes;

The radar footprint (the size of the surface area which is illuminated by the radar) must be small in comparison with all ocean wavelengths of interest. The radar spatial resolution is determined by the bandwidth of the radar signal (see radar signal characteristics) and the beamwidth of the radar antenna.

Wavelength spatial period of the wave—the distance over which the waves shape repeats, and thus the inverse of the spatial frequency

In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings, and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

A radar system uses a radio frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.

The beam of a microwave antenna diverges. Consequently, the resolution decreases with increasing range. For all practical purposes, the beam of an IR radar (laser) does not diverge. Therefore, its resolution is independent of range.

Infrared electromagnetic radiation with longer wavelengths than those of visible light

Infrared radiation (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with longer wavelengths than those of visible light. It is therefore generally invisible to the human eye, although IR at wavelengths up to 1050 nanometers (nm)s from specially pulsed lasers can be seen by humans under certain conditions. IR wavelengths extend from the nominal red edge of the visible spectrum at 700 nanometers, to 1 millimeter (300 GHz). Most of the thermal radiation emitted by objects near room temperature is infrared. As with all EMR, IR carries radiant energy and behaves both like a wave and like its quantum particle, the photon.

Laser Device which emits light via optical amplification

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The term "laser" originated as an acronym for "light amplification by stimulated emission of radiation". The first laser was built in 1960 by Theodore H. Maiman at Hughes Research Laboratories, based on theoretical work by Charles Hard Townes and Arthur Leonard Schawlow.

HF radars utilize the Bragg scattering mechanism and do always operate at very low grazing angles. Due to the low frequency of operation the radar waves are backscattered directly from the gravity waves and surface ripple need not be present.

High frequency The range 3-30 MHz of the electromagnetic spectrum

High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves between 3 to 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters. Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as "skip" or "skywave" propagation – these frequencies are suitable for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations (2.31–25.82 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.

Gravity wave Wave in or at the interface between fluids where gravity is the main equilibrium force

In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere and the ocean, which gives rise to wind waves.

Radar transceivers may be coherent or non-coherent. Coherent radars measure Doppler-modulation as well as amplitude modulation, while non-coherent radars only measure amplitude modulation. Consequently, a non-coherent radar echo contains less information about the sea surface properties. Examples of non-coherent radars are conventional marine navigation radars.

In physics, two wave sources are perfectly coherent if they have a constant phase difference and the same frequency, and the same waveform. Coherence is an ideal property of waves that enables stationary interference. It contains several distinct concepts, which are limiting cases that never quite occur in reality but allow an understanding of the physics of waves, and has become a very important concept in quantum physics. More generally, coherence describes all properties of the correlation between physical quantities of a single wave, or between several waves or wave packets.

The Doppler effect is the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who described the phenomenon in 1842.

Energy backscattered from sea surface as a function of angle. RangeDefinition.png
Energy backscattered from sea surface as a function of angle.

The radar transmitter waveform may be either unmodulated continuous wave, modulated or pulsed. An unmodulated continuous wave radar has no range resolution, but can resolve targets on the basis of different velocity, while a modulated or pulsed radar can resolve echoes from different ranges. The radar waveform plays a very important role in radar theory (Plant and Shuler, 1980).

Factors influencing performance

Remote sensing techniques

An excellent survey of different radar techniques for remote sensing of waves is given by Tucker (1991).

Microwave range finders

Microwave range finders also operate in vertical mode at GHz frequencies and are not as affected by fog and water spray as the laser altimeter. A continuous wave frequency modulated (CWFM) or pulsed radar waveform is normally used to provide range resolution. Since the beam diverges, the linear size of the footprint is directly proportional to range, while the area of the footprint is proportional to the square of range.

One example of a microwave range finder is the Miros SM-094, which is designed to measure waves and water level, including tides. This sensor is used as an air gap (bridge clearance) sensor in NOAA's PORTS system. Another example is the WaveRadar REX, which is a derivative of a Rosemount tank radar.

Digitized sea clutter image. Sea echo image.png
Digitized sea clutter image.

From data on the elevation of the surface of the water at three or more locations, a directional spectrum of wave height can be computed. The algorithm is similar to the one which generates a directional spectrum from data on heave (vertical motion), pitch and roll at a single location, as provided by a disc-shaped wave buoy. An array of three vertical radars, having footprints at the vertices of a horizontal, equilateral triangle, can provide the necessary data on water surface elevation. “Directional WaveGuide” is a commercial radar system based on this technique. It is available from the Dutch companies Enraf and Radac.

Marine navigation radars

Marine navigation radars (X band) provide sea clutter images which contain a pattern resembling a sea wave pattern. By digitizing the radar video signal it can be processed by a digital computer. Sea surface parameters may be calculated on the basis of these digitized images. The marine navigation radar operates in low grazing angle mode and wind generated surface ripple must be present. The marine navigation radar is non-coherent and is a typical example of an indirect wave sensor, because there is no direct relation between wave height and radar back-scatter modulation amplitude. An empirical method of wave spectrum scaling is normally employed. Marine navigation radar based wave sensors are excellent tools for wave direction measurements. A marine navigation radar may also be a tool for surface current measurements. Point measurements of the current vector as well as current maps up to a distance of a few km can be provided (Gangeskar, 2002). Miros WAVEX has its main area of application as directional wave measurements from moving ships. Another example of a marine radar based system is OceanWaves WaMoS II.

Measurement geometry of pulsed Doppler wave and current radar. Geometry.jpeg
Measurement geometry of pulsed Doppler wave and current radar.

The range gated pulsed Doppler microwave radar

The range gated pulsed Doppler microwave radar operates in low grazing angle mode. By using several antennas it may be used as a directional wave sensor, basically measuring the directional spectrum of the horizontal water particle velocity. The velocity spectrum is directly related to the wave height spectrum by a mathematical model based on linear wave theory and accurate measurements of the wave spectrum can be provided under most conditions. As measurements are taken at a distance from the platform on which it is mounted, the wave field is to a small degree disturbed by interference from the platform structure.

Miros Wave and current radar is the only available wave sensor based on the range gated pulsed Doppler radar technique. This radar also uses the dual frequency technique (see below) to perform point measurements of the surface current vector

The dual frequency microwave radar

The dual frequency microwave radar transmits two microwave frequencies simultaneously. The frequency separation is chosen to give a “spatial beat” length which is in the range of the water waves of interest. The dual frequency radar may be considered a microwave equivalent of the high frequency (HF) radar (see below). The dual frequency radar is suitable for the measurement of surface current. As far as wave measurements are concerned, the back-scatter processes are too complicated (and not well understood) to allow useful measurement accuracy to be attained.

The HF radar

The HF radar CODAR SeaSonde and Helzel WERA are well established as a powerful tool for sea current measurements up to a range of 300 km. It operates in the HF and low VHF frequencies band corresponding to a radar wavelength in the range of 10 to 300m. The Doppler shift of the first order Bragg lines of the radar echo is used to derive sea current estimates in very much the same way as for the dual frequency microwave radar. Two radar installations are normally required, looking at the same patch of the sea surface from different angles. [1] The latest generation of shore-based ocean radar can reach more than 200 km for ocean current mapping and more than 100 km for wave measurements Helzel WERA. For all ocean radars, the accuracy in range is excellent. With shorter ranges, the range resolution gets finer. The angular resolution and accuracy depends on the used antenna array configuration and applied algorithms (direction finding or beam forming). The WERA system provides the option to use both techniques; the compact version with direction finding or the array type antenna system with beam forming methods.

Specialized X-Band

The FutureWaves technology was originally developed as an Environmental Ship and Motion Forecasting (ESMF) system for the Navy's ONR (Office of Naval Research) by General Dynamics' Applied Physical Sciences Corporation. The technology was adapted to be released in the commercial market and made its first public appearance at the 2017 Offshore Technology Conference in Houston Texas.

This technology differs from existing wave forecasting systems by using a customized wave sensing radar capable of measuring backscatter Doppler out to ranges of approximately 5 km. The radar antenna is vertically polarized to enhance the sea-surface backscatter signal. It also uses an innovative radar signal processing scheme that addresses the inherently noisy backscatter signals through a mathematical process termed least squares inversion. This approach applies a highly over-determined[ clarification needed ] filter to the radar data, and rejects radar scans that do not observe incoming waves. The result is an accurate representation of the propagating incident wave field that will force ship motions over a 2-3 minute window. The wave processing algorithms also enable real-time calculation of wave field two-dimensional power spectra and significant wave height similar to that provided by a wave buoy.

It also uses a vessel motion prediction process that relies on a pre-calculated force/response database. Dynamic motional degrees of freedom are then represented as a lumped mechanical system whose future motions are predicted by numerically solving a multi-degree-of-freedom, forced, coupled differential equation with initial inertial state provided by vessel motion sensor outputs. The time-domain solution allows for nonlinear forcing mechanisms, such as quadratic roll damping and roll control systems, to be captured in the forecasting.

Finally, it uses the Gravity open architecture middleware solution to integrate the sensor feeds, processing subroutines and user displays. This open architecture approach will allow users to implement customized operator displays along with physics based models of specific vessels and machinery (e.g. cranes) into the system. [2]

Related Research Articles

A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. Doppler radars are used in aviation, sounding satellites, Major League Baseball's StatCast system, meteorology, radar guns, radiology and healthcare, and bistatic radar.

Ultra-wideband is a radio technology that can use a very low energy level for short-range, high-bandwidth communications over a large portion of the radio spectrum. UWB has traditional applications in non-cooperative radar imaging. Most recent applications target sensor data collection, precision locating and tracking applications.

Millimeter cloud radar Weather radar tuned to cloud detection

Millimeter-wave cloud radars, also denominated cloud radars, are radar systems designed to monitor clouds with operating frequencies between 24 and 110 GHz. Accordingly, their wavelengths range from 1 mm to 1.11 cm, about ten times shorter than those used in conventional S band radars such as NEXRAD.

Microwave radiometer

A microwave radiometer (MWR) is a radiometer that measures energy emitted at millimetre-to-centimetre wavelengths known as microwaves. Microwave radiometers are very sensitive receivers designed to measure thermal electromagnetic radiation emitted by atmospheric gases. They are usually equipped with multiple receiving channels in order to derive the characteristic emission spectrum of the atmosphere or extraterrestrial objects. Microwave radiometers are utilized in a variety of environmental and engineering applications, including weather forecasting, climate monitoring, radio astronomy and radio propagation studies.

Imaging radar application of radar which is used to create two-dimensional images

Imaging radar is an application of radar which is used to create two-dimensional images, typically of landscapes. Imaging radar provides its light to illuminate an area on the ground and take a picture at radio wavelengths. It uses an antenna and digital computer storage to record its images. In a radar image, one can see only the energy that was reflected back towards the radar antenna. The radar moves along a flight path and the area illuminated by the radar, or footprint, is moved along the surface in a swath, building the image as it does so.

Pulse-Doppler radar radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

Continuous-wave radar

Continuous-wave radar is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. Continuous-wave (CW) radar uses Doppler, which renders the radar immune to interference from large stationary objects and slow moving clutter.

Passive radar systems encompass a class of radar systems that detect and track objects by processing reflections from non-cooperative sources of illumination in the environment, such as commercial broadcast and communications signals. It is a specific case of bistatic radar, the latter also including the exploitation of cooperative and non-cooperative radar transmitters.

Radiolocating is the process of finding the location of something through the use of radio waves. It generally refers to passive uses, particularly radar—as well as detecting buried cables, water mains, and other public utilities. It is similar to radionavigation, but radiolocation usually refers to passively finding a distant object rather than actively one's own position. Both are types of radiodetermination. Radiolocation is also used in real-time locating systems (RTLS) for tracking valuable assets.

A scatterometer or diffusionmeter is a scientific instrument to measure the return of a beam of light or radar waves scattered by diffusion in a medium such as air. Diffusionmeters using visible light are found in airports or along roads to measure horizontal visibility. Radar scatterometers use radio or microwaves to determine the normalized radar cross section of a surface. They are often mounted on weather satellites to find wind speed and direction, and are used in industries to analyze the roughness of surfaces.

An acoustic Doppler current profiler (ADCP) is a hydroacoustic current meter similar to a sonar, used to measure water current velocities over a depth range using the Doppler effect of sound waves scattered back from particles within the water column. The term ADCP is a generic term for all acoustic current profilers, although the abbreviation originates from an instrument series introduced by RD Instruments in the 1980s. The working frequencies range of ADCPs range from 38 kHz to several Megahertz. The device used in the air for wind speed profiling using sound is known as SODAR and works with the same underlying principles.

QuikSCAT Earth observation satellite carrying the SeaWinds scatterometer to measure the surface wind speed and direction over the ice-free global oceans

The NASA QuikSCAT was an Earth observation satellite carrying the SeaWinds scatterometer. Its primary mission was to measure the surface wind speed and direction over the ice-free global oceans. Observations from QuikSCAT had a wide array of applications, and contributed to climatological studies, weather forecasting, meteorology, oceanographic research, marine safety, commercial fishing, tracking large icebergs, and studies of land and sea ice, among others. This SeaWinds scatterometer is referred to as the QuikSCAT scatterometer to distinguish it from the nearly identical SeaWinds scatterometer flown on the ADEOS-2 satellite.

Coastal ocean dynamics applications radar

Coastal ocean dynamics applications radar (CODAR) describes a type of portable, land-based, High Frequency (HF) radar developed between 1973 and 1983 at NOAA's Wave Propagation Laboratory in Boulder, Colorado. CODAR is a noninvasive system that permits to measure and map near-surface ocean currents in coastal waters. It is transportable and offers output ocean current maps on site in near real time. Moreover, using CODAR it is possible to measure waves heights and it provides an indirect estimate of local wind direction.

Radar engineering details are technical details pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment. This includes field of view in terms of solid angle and maximum unambiguous range and velocity, as well as angular, range and velocity resolution. Radar sensors are classified by application, architecture, radar mode, platform, and propagation window.

Radar MASINT is a subdiscipline of measurement and signature intelligence (MASINT) and refers to intelligence gathering activities that bring together disparate elements that do not fit within the definitions of signals intelligence (SIGINT), imagery intelligence (IMINT), or human intelligence (HUMINT).

One way of outlining the subject of radio science is listing the topics associated with it by authoritative bodies.

Lucy R. Wyatt is a British mathematician and a Professor in the School of Mathematics and Statistics at the University of Sheffield, Yorkshire, UK. Wyatt is a member of the Environmental Dynamics research group in the School of Mathematics.

A Doppler velocity sensor (DVS) is a specialized Doppler radar that uses the Doppler effect to measure the three orthogonal velocity components referenced to the aircraft. When aircraft true heading, pitch and roll are provided by other aircraft systems, it can function as a navigation sensor to perform stand-alone dead reckoning navigation calculations as a Doppler Navigation Set (DNS).

References

  1. CODAR Ocean Sensors (COS)
  2. "FutureWaves". www.aphysci.com. Retrieved 2017-05-17.
  1. Gangeskar, R., (2002),“Ocean Current Estimated from X-band Radar Sea Surface Images”, IEEE Transactions on Remote Sensing, vol. 40, no. 4.
  2. Grønlie, Ø (2004). “Wave Radars – A comparison of different concepts and techniques”, Hydro International, volume 8, number 5, June 2004.
  3. Plant, W.J. and D.L. Shuler, (1980) “Remote sensing of the sea surface using one and two frequency microwave techniques”, Radio Science, Vol. 15 No. 3, pages 605-615.
  4. Tucker, M.J., (1991) “Waves in Ocean Engineering, measurement analysis, interpretation”, Ellis Horwood Limited, Chapter 8, pages 231-266.
  5. Wyatt, (2009) "Measuring high and low waves with HF radar", Proceedings of IEEE Oceans Conference, Bremen, 2009.
  6. HYDRO International, (2010) "WERA Ocean Radar System - Features, Accuracy and Reliability", HYDRO International, Volume 14, Number 3, 2010, pages 22-23.

Microwave range finders:

The range gated pulsed Doppler microwave radar:

X-band based wave sensors:

HF-Radar: