Names | |
---|---|
IUPAC name Zinc(II) hydride | |
Systematic IUPAC name Zinc dihydride | |
Other names Zinc hydride Zincane | |
Identifiers | |
3D model (JSmol) | |
ChemSpider | |
PubChem CID | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
ZnH2 | |
Molar mass | 67.425 g/mol |
Appearance | White crystals |
Structure | |
linear at Zn | |
linear | |
0 D | |
Related compounds | |
Related compounds | Mercury(II) hydride Cadmium(II) hydride |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Zinc hydride is an inorganic compound with the chemical formula Zn H 2. It is a white, odourless solid which slowly decomposes into its elements at room temperature; despite this it is the most stable of the binary first row transition metal hydrides. A variety of coordination compounds containing Zn–H bonds are used as reducing agents, [1] but ZnH2 itself has no common applications.
Zinc(II) hydride was first synthesized in 1947 by Hermann Schlesinger, via a reaction between dimethylzinc Zn(CH3)2 and lithium aluminium hydride Li[AlH4]; [2] a process which was somewhat hazardous due to the pyrophoric nature of Zn(CH3)2.
Later methods were predominantly salt metathesis reactions between zinc halides and alkali metal hydrides, which are significantly safer. [3] [4] Examples include:
Small quantities of gaseous zinc(II) hydride have also been produced by laser ablation of zinc under a hydrogen atmosphere [5] [6] and other high energy techniques. These methods have been used to assess its gas phase properties.
New evidence suggests that in zinc(II) hydride, elements form a one-dimensional network (polymer), being connected by covalent bonds. [7] Other lower metal hydrides polymerise in a similar fashion (c.f. aluminium hydride). Solid zinc(II) hydride is the irreversible autopolymerisation product of the molecular form, and the molecular form cannot be isolated in concentration. Solubilising zinc(II) hydride in non-aqueous solvents, involve adducts with molecular zinc(II) hydride, such as ZnH2·H2 in liquid hydrogen.
Zinc(II) hydride slowly decomposes to metallic zinc and hydrogen gas at room temperature, with decomposition becoming rapid if it is heated above 90°C. [8]
It is readily oxidised and is sensitive to both air and moisture; being hydrolysed slowly by water but violently by aqueous acids, [3] which indicates possible passivation via the formation of a surface layer of ZnO. Despite this older samples may be pyrophoric. [3] Zinc hydride can therefore be considered metastable at best, however it is still the most stable of all the binary first row transition metal hydrides (c.f. titanium(IV) hydride).
Molecular zinc(II) hydride, ZnH2, has been identified as a volatile product of the acidified reduction of zinc ions with sodium borohydride.[ citation needed ] This reaction is similar to the acidified reduction with lithium aluminium hydride, however a greater fraction of the generated zinc(II) hydride is in the molecular form. This can be attributed to a slower reaction rate, which prevents a polymerising concentration of building over the progression of the reaction. This follows earlier experiments in direct synthesis from the elements. The reaction of excited zinc atoms with molecular hydrogen in the gas phase was studied by Breckenridge et al using laserpump-probe techniques.[ citation needed ] Owing to its relative thermal stability, molecular zinc(II) hydride is included in the short list of molecular metal hydrides, which have been successfully identified in the gas phase (that is, not limited to matrix isolation).
The average Zn–H bond energy was recently calculated to be 51.24 kcal mol−1, while the H–H bond energy is 103.3 kcal mol−1.[ citation needed ] Therefore, the overall reaction is nearly ergoneutral.
Molecular zinc hydride in the gas phase was found to be linear with a Zn–H bond length of 153.5 pm. [9]
The molecule can be found a singlet ground state of 1Σg+.
Quantum chemical calculations predict the molecular form to exist in a doubly hydrogen-bridged, dimeric groundstate, with little or no formational energy barrier.[ citation needed ] The dimer can be called di-μ-hydrido-bis(hydridozinc), per IUPAC additive nomenclature.
In chemistry, a hydride is formally the anion of hydrogen (H−), a hydrogen atom with two electrons. The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.
Silane (Silicane) is an inorganic compound with chemical formula SiH4. It is a colourless, pyrophoric, toxic gas with a sharp, repulsive, pungent smell, somewhat similar to that of acetic acid. Silane is of practical interest as a precursor to elemental silicon. Silane with alkyl groups are effective water repellents for mineral surfaces such as concrete and masonry. Silanes with both organic and inorganic attachments are used as coupling agents. They are commonly used to apply coatings to surfaces or as an adhesion promoter.
Arsine (IUPAC name: arsane) is an inorganic compound with the formula AsH3. This flammable, pyrophoric, and highly toxic pnictogen hydride gas is one of the simplest compounds of arsenic. Despite its lethality, it finds some applications in the semiconductor industry and for the synthesis of organoarsenic compounds. The term arsine is commonly used to describe a class of organoarsenic compounds of the formula AsH3−xRx, where R = aryl or alkyl. For example, As(C6H5)3, called triphenylarsine, is referred to as "an arsine".
Diborane(6), commonly known as diborane, is the chemical compound with the formula B2H6. It is a toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Given its simple formula, borane is a fundamental boron compound. It has attracted wide attention for its electronic structure. Several of its derivatives are useful reagents.
Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li[AlH4] or LiAlH4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic synthesis, especially for the reduction of esters, carboxylic acids, and amides. The solid is dangerously reactive toward water, releasing gaseous hydrogen (H2). Some related derivatives have been discussed for hydrogen storage.
Borderline hydrides typically refer to hydrides formed of hydrogen and elements of the periodic table in group 11 and group 12 and indium (In) and thallium (Tl). These compounds have properties intermediate between covalent hydrides and saline hydrides. Hydrides are chemical compounds that contain a metal and hydrogen acting as a negative ion.
Aluminium hydride is an inorganic compound with the formula AlH3. Alane and its derivatives are part of a family of common reducing reagents in organic synthesis based around group 13 hydrides. In solution—typically in etherial solvents such tetrahydrofuran or diethyl ether—aluminium hydride forms complexes with Lewis bases, and reacts selectively with particular organic functional groups, and although it is not a reagent of choice, it can react with carbon-carbon multiple bonds. Given its density, and with hydrogen content on the order of 10% by weight, some forms of alane are, as of 2016, active candidates for storing hydrogen and so for power generation in fuel cell applications, including electric vehicles. As of 2006 it was noted that further research was required to identify an efficient, economical way to reverse the process, regenerating alane from spent aluminium product.
Sodium aluminium hydride or sodium alumanuide is an inorganic compound with the chemical formula NaAlH4. It is a white pyrophoric solid that dissolves in tetrahydrofuran (THF), but not in diethyl ether or hydrocarbons. It has been evaluated as an agent for the reversible storage of hydrogen and it is used as a reagent for the chemical synthesis of organic compounds. Similar to lithium aluminium hydride, it is a salt consisting of separated sodium cations and tetrahedral AlH−
4 anions.
Transition metal hydrides are chemical compounds containing a transition metal bonded to hydrogen. Most transition metals form hydride complexes and some are significant in various catalytic and synthetic reactions. The term "hydride" is used loosely: some of them are acidic (e.g., H2Fe(CO)4), whereas some others are hydridic, having H−-like character (e.g., ZnH2).
Beryllium hydride is an inorganic compound with the chemical formula n. This alkaline earth hydride is a colourless solid that is insoluble in solvents that do not decompose it. Unlike the ionically bonded hydrides of the heavier Group 2 elements, beryllium hydride is covalently bonded.
Binary compounds of hydrogen are binary chemical compounds containing just hydrogen and one other chemical element. By convention all binary hydrogen compounds are called hydrides even when the hydrogen atom in it is not an anion. These hydrogen compounds can be grouped into several types.
Cadmium hydride is an inorganic compound with the chemical formula (CdH
2)
n. It is a solid, known only as a thermally unstable, insoluble white powder.
Indium trihydride is an inorganic compound with the chemical formula. It has been observed in matrix isolation and laser ablation experiments. Gas phase stability has been predicted. The infrared spectrum was obtained in the gas phase by laser ablation of indium in presence of hydrogen gas InH3 is of no practical importance.
Titanium(IV) hydride is an inorganic compound with the empirical chemical formula TiH
4. It has not yet been obtained in bulk, hence its bulk properties remain unknown. However, molecular titanium(IV) hydride has been isolated in solid gas matrices. The molecular form is a colourless gas, and very unstable toward thermal decomposition. As such the compound is not well characterised, although many of its properties have been calculated via computational chemistry.
Mercury(II) hydride is an inorganic compound with the chemical formula HgH
2. It is both thermodynamically and kinetically unstable at ambient temperature, and as such, little is known about its bulk properties. However, it known as a white, crystalline solid, which is kinetically stable at temperatures below −125 °C (−193 °F), which was synthesised for the first time in 1951.
Copper hydride is an inorganic compound with the chemical formula CuHn where n ~ 0.95. It is a red solid, rarely isolated as a pure composition, that decomposes to the elements. Copper hydride is mainly produced as a reducing agent in organic synthesis and as a precursor to various catalysts.
1,2-Dimethyldiborane is an organoboron compound with the formula [(CH3)BH2]2. Structurally, it is related to diborane, but with methyl groups replacing terminal hydrides on each boron. It is the dimer of methylborane, CH3BH2, the simplest alkylborane. 1,2-Dimethyldiborane can exist in a cis- and a trans arrangement. 1,2-Dimethyldiborane is an easily condensed, colorless gas that ignites spontaneously in air.
Group 14 hydrides are chemical compounds composed of hydrogen atoms and group 14 atoms.
Lithium tetrahydridogallate is the inorganic compound with formula LiGaH4. It is a white solid similar to but less thermally robust than lithium aluminium hydride.
The inorganic imides are compounds containing an ion composed of nitrogen bonded to hydrogen with formula HN2−. Organic imides have the NH group, and two single or one double covalent bond to other atoms. The imides are related to the inorganic amides (H2N−), the nitrides (N3−) and the nitridohydrides (N3−•H−).
{{cite journal}}
: CS1 maint: multiple names: authors list (link)