Zoology

Last updated

Zoology ( /zˈɒləi, zu-/ ) [note 1] is the branch of biology that studies the animal kingdom, including the structure, embryology, evolution, classification, habits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. The term is derived from Ancient Greek ζῷον, zōion, i.e. "animal" and λόγος, logos, i.e. "knowledge, study". [1]

Biology is the natural science that studies life and living organisms, including their physical structure, chemical processes, molecular interactions, physiological mechanisms, development and evolution. Despite the complexity of the science, there are certain unifying concepts that consolidate it into a single, coherent field. Biology recognizes the cell as the basic unit of life, genes as the basic unit of heredity, and evolution as the engine that propels the creation and extinction of species. Living organisms are open systems that survive by transforming energy and decreasing their local entropy to maintain a stable and vital condition defined as homeostasis.

Anatomy The study of the structure of organisms and their parts

Anatomy is the branch of biology concerned with the study of the structure of organisms and their parts. Anatomy is a branch of natural science which deals with the structural organization of living things. It is an old science, having its beginnings in prehistoric times. Anatomy is inherently tied to developmental biology, embryology, comparative anatomy, evolutionary biology, and phylogeny, as these are the processes by which anatomy is generated over immediate (embryology) and long (evolution) timescales. Anatomy and physiology, which study (respectively) the structure and function of organisms and their parts, make a natural pair of related disciplines, and they are often studied together. Human anatomy is one of the essential basic sciences that are applied in medicine.

Embryology branch of biology studying prenatal biology

Embryology is the branch of biology that studies the prenatal development of gametes, fertilization, and development of embryos and fetuses. Additionally, embryology encompasses the study of congenital disorders that occur before birth, known as teratology.

Contents

History

Ancient History to Darwin

Conrad Gesner (1516-1565). His Historiae animalium is considered the beginning of modern zoology. Gessner Conrad 1516-1565.jpg
Conrad Gesner (1516–1565). His Historiae animalium is considered the beginning of modern zoology.

The history of zoology traces the study of the animal kingdom from ancient to modern times. Although the concept of zoology as a single coherent field arose much later, the zoological sciences emerged from natural history reaching back to the biological works of Aristotle and Galen in the ancient Greco-Roman world. This ancient work was further developed in the Middle Ages by Muslim physicians and scholars such as Albertus Magnus. [2] [3] [4] During the Renaissance and early modern period, zoological thought was revolutionized in Europe by a renewed interest in empiricism and the discovery of many novel organisms. Prominent in this movement were Vesalius and William Harvey, who used experimentation and careful observation in physiology, and naturalists such as Carl Linnaeus, Jean-Baptiste Lamarck, and Buffon who began to classify the diversity of life and the fossil record, as well as the development and behavior of organisms. Microscopy revealed the previously unknown world of microorganisms, laying the groundwork for cell theory. [5] The growing importance of natural theology, partly a response to the rise of mechanical philosophy, encouraged the growth of natural history (although it entrenched the argument from design).

The history of zoology had a key moment in 1859 with the publication of Darwin's On the Origin of Species.

Animal Kingdom of motile multicellular eukaryotic heterotrophic organisms

Animals are multicellular eukaryotic organisms that form the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 millionths of a metre to 33.6 metres (110 ft). They have complex interactions with each other and their environments, forming intricate food webs. The kingdom Animalia includes humans, but in colloquial use the term animal often refers only to non-human animals. The study of non-human animals is known as zoology.

Natural history Study of organisms including plants or animals in their environment

Natural history is a domain of inquiry involving organisms, including animals, fungi and plants, in their natural environment, leaning more towards observational than experimental methods of study. A person who studies natural history is called a naturalist or natural historian.

Over the 18th, 19th, and 20th centuries, zoology became an increasingly professional scientific discipline. Explorer-naturalists such as Alexander von Humboldt investigated the interaction between organisms and their environment, and the ways this relationship depends on geography, laying the foundations for biogeography, ecology and ethology. Naturalists began to reject essentialism and consider the importance of extinction and the mutability of species. Cell theory provided a new perspective on the fundamental basis of life. [6] [7]

Alexander von Humboldt Prussian geographer, naturalist and explorer (1769–1859)

Friedrich Wilhelm Heinrich Alexander von Humboldt was a Prussian polymath, geographer, naturalist, explorer, and influential proponent of Romantic philosophy and science. He was the younger brother of the Prussian minister, philosopher, and linguist Wilhelm von Humboldt (1767–1835). Humboldt's quantitative work on botanical geography laid the foundation for the field of biogeography. Humboldt's advocacy of long-term systematic geophysical measurement laid the foundation for modern geomagnetic and meteorological monitoring.

Biogeography The study of the distribution of species and ecosystems in geographic space and through geological time

Biogeography is the study of the distribution of species and ecosystems in geographic space and through geological time. Organisms and biological communities often vary in a regular fashion along geographic gradients of latitude, elevation, isolation and habitat area. Phytogeography is the branch of biogeography that studies the distribution of plants. Zoogeography is the branch that studies distribution of animals.

Ecology Scientific study of the relationships between living organisms and their environment

Ecology is a branch of biology that studies the interactions among organisms and their biophysical environment, which includes both biotic and abiotic components. Topics of interest include the biodiversity, distribution, biomass, and populations of organisms, as well as cooperation and competition within and between species. Ecosystems are dynamically interacting systems of organisms, the communities they make up, and the non-living components of their environment. Ecosystem processes, such as primary production, pedogenesis, nutrient cycling, and niche construction, regulate the flux of energy and matter through an environment. These processes are sustained by organisms with specific life history traits.

Post-Darwin

These developments, as well as the results from embryology and paleontology, were synthesized in Charles Darwin's theory of evolution by natural selection. In 1859, Darwin placed the theory of organic evolution on a new footing, by his discovery of a process by which organic evolution can occur, and provided observational evidence that it had done so. [8]

Paleontology Hominin events for the last 10 million years

Paleontology, sometimes spelled palaeontology, is the scientific study of life that existed prior to, and sometimes including, the start of the Holocene Epoch. It includes the study of fossils to determine organisms' evolution and interactions with each other and their environments. Paleontological observations have been documented as far back as the 5th century BC. The science became established in the 18th century as a result of Georges Cuvier's work on comparative anatomy, and developed rapidly in the 19th century. The term itself originates from Greek παλαιός, palaios, "old, ancient", ὄν, on, "being, creature" and λόγος, logos, "speech, thought, study".

Charles Darwin British naturalist, author of "On the Origin of Species, by Means of Natural Selection"

Charles Robert Darwin, was an English naturalist, geologist and biologist, best known for his contributions to the science of evolution. His proposition that all species of life have descended over time from common ancestors is now widely accepted, and considered a foundational concept in science. In a joint publication with Alfred Russel Wallace, he introduced his scientific theory that this branching pattern of evolution resulted from a process that he called natural selection, in which the struggle for existence has a similar effect to the artificial selection involved in selective breeding. Darwin has been described as one of the most influential figures in human history, and he was honoured by burial in Westminster Abbey.

Evolution change in the heritable characteristics of biological populations over successive generations

Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes that are passed on from parent to offspring during reproduction. Different characteristics tend to exist within any given population as a result of mutation, genetic recombination and other sources of genetic variation. Evolution occurs when evolutionary processes such as natural selection and genetic drift act on this variation, resulting in certain characteristics becoming more common or rare within a population. It is this process of evolution that has given rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms and molecules.

Darwin gave a new direction to morphology and physiology, by uniting them in a common biological theory: the theory of organic evolution. The result was a reconstruction of the classification of animals upon a genealogical basis, fresh investigation of the development of animals, and early attempts to determine their genetic relationships. The end of the 19th century saw the fall of spontaneous generation and the rise of the germ theory of disease, though the mechanism of inheritance remained a mystery. In the early 20th century, the rediscovery of Mendel's work led to the rapid development of genetics, and by the 1930s the combination of population genetics and natural selection in the modern synthesis created evolutionary biology. [9]

Morphology (biology) In biology, the form and structure of organisms

Morphology is a branch of biology dealing with the study of the form and structure of organisms and their specific structural features.

Physiology science of the function of living systems

Physiology is the scientific study of the functions and mechanisms which work within a living system.

Spontaneous generation disproven theory of life arising from nonliving matter

Spontaneous generation refers to an obsolete body of thought on the ordinary formation of living organisms without descent from similar organisms. The theory of spontaneous generation held that living creatures could arise from nonliving matter and that such processes were commonplace and regular. For instance, it was hypothesized that certain forms such as fleas could arise from inanimate matter such as dust, or that maggots could arise from dead flesh. A variant idea was that of equivocal generation, in which species such as tapeworms arose from unrelated living organisms, now understood to be their hosts. The idea of univocal generation, by contrast, refers to effectively exclusive reproduction from genetically related parent(s), generally of the same species.

Research

Structural

Cell biology studies the structural and physiological properties of cells, including their behavior, interactions, and environment. This is done on both the microscopic and molecular levels, for single-celled organisms such as bacteria as well as the specialized cells in multicellular organisms such as humans. Understanding the structure and function of cells is fundamental to all of the biological sciences. The similarities and differences between cell types are particularly relevant to molecular biology.

Cell biology Scientific Discipline that Studies Cells

Cell biology is a branch of biology that studies the structure and function of the cell, which is the basic unit of life. Cell biology is concerned with the physiological properties, metabolic processes, signaling pathways, life cycle, chemical composition, and interactions of the cell with their environment. This is done both on a microscopic and molecular level as it encompasses prokaryotic cells and eukaryotic cells. Knowing the components of cells and how cells work is fundamental to all biological sciences; it is also essential for research in bio-medical fields such as cancer, and other diseases. Research in cell biology is closely related to genetics, biochemistry, molecular biology, immunology, and cytochemistry. For some extra information, the recommendation is to check the biology resource in the external link.

Cell (biology) The basic structural and functional unit of all organisms; the smallest unit of life.

The cell is the basic structural, functional, and biological unit of all known organisms. A cell is the smallest unit of life. Cells are often called the "building blocks of life". The study of cells is called cell biology, cellular biology, or cytology.

Behavior or behaviour is the actions and mannerisms made by individuals, organisms, systems or artificial entities in conjunction with themselves or their environment, which includes the other systems or organisms around as well as the (inanimate) physical environment. It is the computed response of the system or organism to various stimuli or inputs, whether internal or external, conscious or subconscious, overt or covert, and voluntary or involuntary.

Anatomy considers the forms of macroscopic structures such as organs and organ systems. [10] It focuses on how organs and organ systems work together in the bodies of humans and animals, in addition to how they work independently. Anatomy and cell biology are two studies that are closely related, and can be categorized under "structural" studies.

Physiological

Animal anatomical engraving from Handbuch der Anatomie der Tiere fur Kunstler. Dog anatomy anterior view.jpg
Animal anatomical engraving from Handbuch der Anatomie der Tiere für Künstler.

Physiology studies the mechanical, physical, and biochemical processes of living organisms by attempting to understand how all of the structures function as a whole. The theme of "structure to function" is central to biology. Physiological studies have traditionally been divided into plant physiology and animal physiology, but some principles of physiology are universal, no matter what particular organism is being studied. For example, what is learned about the physiology of yeast cells can also apply to human cells. The field of animal physiology extends the tools and methods of human physiology to non-human species. Physiology studies how for example nervous, immune, endocrine, respiratory, and circulatory systems, function and interact.

Evolutionary

Evolutionary research is concerned with the origin and descent of species, as well as their change over time, and includes scientists from many taxonomically oriented disciplines. For example, it generally involves scientists who have special training in particular organisms such as mammalogy, ornithology, herpetology, or entomology, but use those organisms as systems to answer general questions about evolution.

Evolutionary biology is partly based on paleontology, which uses the fossil record to answer questions about the mode and tempo of evolution, [11] and partly on the developments in areas such as population genetics [12] and evolutionary theory. Following the development of DNA fingerprinting techniques in the late 20th century, the application of these techniques in zoology has increased the understanding of animal populations. [13] In the 1980s, developmental biology re-entered evolutionary biology from its initial exclusion from the modern synthesis through the study of evolutionary developmental biology. [14] Related fields often considered part of evolutionary biology are phylogenetics, systematics, and taxonomy.

Classification

Scientific classification in zoology, is a method by which zoologists group and categorize organisms by biological type, such as genus or species. Biological classification is a form of scientific taxonomy. Modern biological classification has its root in the work of Carl Linnaeus, who grouped species according to shared physical characteristics. These groupings have since been revised to improve consistency with the Darwinian principle of common descent. Molecular phylogenetics, which uses DNA sequences as data, has driven many recent revisions and is likely to continue to do so. Biological classification belongs to the science of zoological systematics.

Linnaeus's table of the animal kingdom from the first edition of Systema Naturae (1735). Linnaeus - Regnum Animale (1735).png
Linnaeus's table of the animal kingdom from the first edition of Systema Naturae (1735).

Many scientists now consider the five-kingdom system outdated. Modern alternative classification systems generally start with the three-domain system: Archaea (originally Archaebacteria); Bacteria (originally Eubacteria); Eukaryota (including protists, fungi, plants, and animals) [15] These domains reflect whether the cells have nuclei or not, as well as differences in the chemical composition of the cell exteriors. [15]

Further, each kingdom is broken down recursively until each species is separately classified. The order is: Domain; kingdom; phylum; class; order; family; genus; species. The scientific name of an organism is generated from its genus and species. For example, humans are listed as Homo sapiens . Homo is the genus, and sapiens the specific epithet, both of them combined make up the species name. When writing the scientific name of an organism, it is proper to capitalize the first letter in the genus and put all of the specific epithet in lowercase. Additionally, the entire term may be italicized or underlined. [16]

The dominant classification system is called the Linnaean taxonomy. It includes ranks and binomial nomenclature. The classification, taxonomy, and nomenclature of zoological organisms is administered by the International Code of Zoological Nomenclature. A merging draft, BioCode, was published in 1997 in an attempt to standardize nomenclature, but has yet to be formally adopted. [17]

Ethology

Kelp gull chicks peck at red spot on mother's beak to stimulate the regurgitating reflex. Larus Dominicanus with young.jpg
Kelp gull chicks peck at red spot on mother's beak to stimulate the regurgitating reflex.

Ethology is the scientific and objective study of animal behavior under natural conditions, [18] as opposed to behaviourism, which focuses on behavioral response studies in a laboratory setting. Ethologists have been particularly concerned with the evolution of behavior and the understanding of behavior in terms of the theory of natural selection. In one sense, the first modern ethologist was Charles Darwin, whose book, The Expression of the Emotions in Man and Animals, influenced many future ethologists. [19]

Biogeography

Biogeography studies the spatial distribution of organisms on the Earth, [20] focusing on topics like plate tectonics, climate change, dispersal and migration, and cladistics. The creation of this study is widely accredited to Alfred Russel Wallace, a British biologist who had some of his work jointly published with Charles Darwin.

Branches of zoology

Although the study of animal life is ancient, its scientific incarnation is relatively modern. This mirrors the transition from natural history to biology at the start of the 19th century. Since Hunter and Cuvier, comparative anatomical study has been associated with morphography, shaping the modern areas of zoological investigation: anatomy, physiology, histology, embryology, teratology and ethology. [21] Modern zoology first arose in German and British universities. In Britain, Thomas Henry Huxley was a prominent figure. His ideas were centered on the morphology of animals. Many consider him the greatest comparative anatomist of the latter half of the 19th century. Similar to Hunter, his courses were composed of lectures and laboratory practical classes in contrast to the previous format of lectures only.

Gradually zoology expanded beyond Huxley's comparative anatomy to include the following sub-disciplines:

Related fields:

See also

Notes

  1. The pronunciation of zoology as /zuˈɒlədʒi/ is typically regarded as nonstandard, though is not uncommon.

Related Research Articles

Outline of biology Hierarchical outline list of articles related to biology

Biology – The natural science that involves the study of life and living organisms, including their structure, function, growth, origin, evolution, distribution, and taxonomy.

Biological anthropology Branch of anthropology that studies the physical development of the human species

Biological anthropology, also known as physical anthropology, is a scientific discipline concerned with the biological and behavioral aspects of human beings, their extinct hominin ancestors, and related non-human primates, particularly from an evolutionary perspective. It is a subfield of anthropology that provides a biological perspective to the systematic study of human beings.

Systematics The study of the diversification and relationships among living things through time

Biological systematics is the study of the diversification of living forms, both past and present, and the relationships among living things through time. Relationships are visualized as evolutionary trees. Phylogenies have two components: branching order and branch length. Phylogenetic trees of species and higher taxa are used to study the evolution of traits and the distribution of organisms (biogeography). Systematics, in other words, is used to understand the evolutionary history of life on Earth.

Taxonomy (biology) The science of identifying, describing, defining and naming groups of biological organisms

In biology, taxonomy is the science of naming, defining (circumscribing) and classifying groups of biological organisms on the basis of shared characteristics. Organisms are grouped together into taxa and these groups are given a taxonomic rank; groups of a given rank can be aggregated to form a super-group of higher rank, thus creating a taxonomic hierarchy. The principal ranks in modern use are domain, kingdom, phylum, class, order, family, genus, and species. The Swedish botanist Carl Linnaeus is regarded as the founder of the current system of taxonomy, as he developed a system known as Linnaean taxonomy for categorizing organisms and binomial nomenclature for naming organisms.

The history of zoology before Charles Darwin's 1859 theory of evolution traces the organized study of the animal kingdom from ancient to modern times. Although the concept of zoology as a single coherent field arose much later, systematic study of zoology is seen in the works of Aristotle and Galen in the ancient Greco-Roman world. This work was developed in the Middle Ages by Islamic medicine and scholarship, and in turn their work was extended by European scholars such as Albertus Magnus.

History of biology History of the study of life from ancient to modern times

The history of biology traces the study of the living world from ancient to modern times. Although the concept of biology as a single coherent field arose in the 19th century, the biological sciences emerged from traditions of medicine and natural history reaching back to ayurveda, ancient Egyptian medicine and the works of Aristotle and Galen in the ancient Greco-Roman world. This ancient work was further developed in the Middle Ages by Muslim physicians and scholars such as Avicenna. During the European Renaissance and early modern period, biological thought was revolutionized in Europe by a renewed interest in empiricism and the discovery of many novel organisms. Prominent in this movement were Vesalius and Harvey, who used experimentation and careful observation in physiology, and naturalists such as Linnaeus and Buffon who began to classify the diversity of life and the fossil record, as well as the development and behavior of organisms. Antonie van Leeuwenhoek revealed by means of microscopy the previously unknown world of microorganisms, laying the groundwork for cell theory. The growing importance of natural theology, partly a response to the rise of mechanical philosophy, encouraged the growth of natural history.

Evolutionary biology Study of the processes that produced the diversity of life

Evolutionary biology is the subfield of biology that studies the evolutionary processes that produced the diversity of life on Earth, starting from a single common ancestor. These processes include natural selection, common descent, and speciation.

Evolutionary anthropology The interdisciplinary study of the evolution of human physiology and human behaviour and the relation between hominids and non-hominid primates

Evolutionary anthropology is the interdisciplinary study of the evolution of human physiology and human behaviour and the relation between hominids and non-hominid primates. Evolutionary anthropology is based in natural science and social science. Various fields and disciplines of evolutionary anthropology are:

<i>Genetics and the Origin of Species</i> book by Theodosius Dobzhansky

Genetics and the Origin of Species is a 1937 book by the Ukrainian-American evolutionary biologist Theodosius Dobzhansky. It is regarded as one of the most important works of the modern synthesis, and was one of the earliest. The book popularized the work of population genetics to other biologists, and influenced their appreciation for the genetic basis of evolution. In his book, Dobzhansky applied the theoretical work of Sewall Wright (1889-1988) to the study of natural populations, allowing him to address evolutionary problems in a novel way during his time. Dobzhansky implements theories of mutation, natural selection, and speciation throughout his book to explain habits of populations and the resulting effects on their genetic behavior. The book explains evolution in depth as a process over time that accounts for the diversity of all life on Earth. The study of evolution was present, but greatly neglected at the time. Dobzhansky illustrates that evolution regarding the origin and nature of species during this time in history was deemed mysterious, but had expanding potential for progress to be made in its field.

Evolutionary neuroscience Study of the evolution of nervous systems

Evolutionary neuroscience is the scientific study of the evolution of nervous systems. Evolutionary neuroscientists investigate the evolution and natural history of nervous system structure, functions and emergent properties. The field draws on concepts and findings from both neuroscience and evolutionary biology. Historically, most empirical work has been in the area of comparative neuroanatomy, and modern studies often make use of phylogenetic comparative methods. Selective breeding and experimental evolution approaches are also being used more frequently.

The following outline is provided as an overview of and topical guide to zoology:

Human ethology is the study of human behavior. Ethology as a discipline is generally thought of as a sub-category of biology, though psychological theories have been developed based on ethological ideas. The bridging between biological sciences and social sciences creates an understanding of human ethology.

This article considers the history of zoology since the theory of evolution by natural selection proposed by Charles Darwin in 1859.

The history of evolutionary psychology began with Charles Darwin, who said that humans have social instincts that evolved by natural selection. Darwin's work inspired later psychologists such as William James and Sigmund Freud but for most of the 20th century psychologists focused more on behaviorism and proximate explanations for human behavior. E. O. Wilson's landmark 1975 book, Sociobiology, synthesized recent theoretical advances in evolutionary theory to explain social behavior in animals, including humans. Jerome Barkow, Leda Cosmides and John Tooby popularized the term "evolutionary psychology" in their 1992 book The Adapted Mind: Evolutionary Psychology and The Generation of Culture. Like sociobiology before it, evolutionary psychology has been embroiled in controversy, but evolutionary psychologists see their field as gaining increased acceptance overall.

The following outline is provided as an overview of and topical guide to natural science:

Bibliography of biology

This bibliography of biology is a list of notable works, organized by subdiscipline, on the subject of biology.

Outline of evolution Hierarchical outline list of articles related to evolution

The following outline is provided as an overview of and topical guide to evolution:

References

  1. "zoology". Online Etymology Dictionary .
  2. Bayrakdar, Mehmet (1986). "Al-Jahiz and the rise of biological evolution" (PDF). Ankara Üniversitesi İlahiyat Fakültesi Dergisi. Ankara University. 27 (1): 307–315. doi:10.1501/Ilhfak_0000000674 . Retrieved 21 December 2012.
  3. Paul S. Agutter & Denys N. Wheatley (2008). Thinking about Life: The History and Philosophy of Biology and Other Sciences. Springer. p. 43. ISBN   1-4020-8865-5.
  4. Saint Albertus Magnus (1999). On Animals: A Medieval Summa Zoologica. Johns Hopkins University Press. ISBN   0-8018-4823-7.
  5. Lois N. Magner (2002). A History of the Life Sciences, Revised and Expanded. CRC Press. pp. 133–144. ISBN   0-8247-0824-5.
  6. Jan Sapp (2003). "Chapter 7". Genesis: The Evolution of Biology. Oxford University Press. ISBN   0-19-515619-6.
  7. William Coleman (1978). "Chapter 2". Biology in the Nineteenth Century. Cambridge University Press. ISBN   0-521-29293-X.
  8. Jerry A. Coyne (2009). Why Evolution is True. Oxford: Oxford University Press. p. 17. ISBN   0-19-923084-6.
  9. "Appendix: Frequently Asked Questions". Science and Creationism: a view from the National Academy of Sciences (php) (Second ed.). Washington, DC: The National Academy of Sciences. 1999. p. 28. ISBN   -0-309-06406-6 . Retrieved September 24, 2009.
  10. Henry Gray (1918). Anatomy of the Human Body. Lea & Febiger.
  11. Jablonski D (1999). "The future of the fossil record". Science. 284 (5423): 2114–2116. doi:10.1126/science.284.5423.2114. PMID   10381868.
  12. John H. Gillespie (1998). Population Genetics: A Concise Guide. Johns Hopkins Press. ISBN   978-0-8018-8008-7.
  13. Chambers, Geoffrey K.; Curtis, Caitlin; Millar, Craig D.; Huynen, Leon; Lambert, David M. (2014-01-01). "DNA fingerprinting in zoology: past, present, future". Investigative Genetics. 5 (1): 3. doi:10.1186/2041-2223-5-3. ISSN   2041-2223. PMC   3909909 . PMID   24490906.
  14. Vassiliki Betty Smocovitis (1996). Unifying Biology: The Evolutionary Synthesis and Evolutionary Biology. Princeton University Press. ISBN   978-0-691-03343-3.
  15. 1 2 Woese C, Kandler O, Wheelis M (1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proc Natl Acad Sci USA. 87 (12): 4576–4579. Bibcode:1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC   54159 . PMID   2112744.
  16. Heather Silyn-Roberts (2000). Writing for Science and Engineering: Papers, Presentation. Oxford: Butterworth-Heinemann. p. 198. ISBN   0-7506-4636-5.
  17. John McNeill (4 November 1996). "The BioCode: Integrated biological nomenclature for the 21st century?". Proceedings of a Mini-Symposium on Biological Nomenclature in the 21st Century.
  18. "Definition of ETHOLOGY". Merriam-Webster. Retrieved 30 October 2012. 2 : the scientific and objective study of animal behaviour especially under natural conditions
  19. Black, J (Jun 2002). "Darwin in the world of emotions" (Free full text). Journal of the Royal Society of Medicine. 95 (6): 311–313. doi:10.1258/jrsm.95.6.311. ISSN   0141-0768. PMC   1279921 . PMID   12042386.
  20. Wiley, R. H. (1981). "Social structure and individual ontogenies: problems of description, mechanism, and evolution" (PDF). Perspectives in ethology. 4: 105–133. Retrieved 21 December 2012.
  21. "zoology". Encyclopedia Britannica. Retrieved 2017-09-13.
Wikiversity Wikiversity-logo-Snorky.svg
Wikiversity
At Wikiversity, you can learn
more and teach others about Zoology at the School of Zoology.