Cut rule

Last updated

In mathematical logic, the cut rule is an inference rule of sequent calculus. It is a generalisation of the classical modus ponens inference rule. Its meaning is that, if a formula A appears as a conclusion in one proof and a hypothesis in another, then another proof in which the formula A does not appear can be deduced. In the particular case of the modus ponens, for example occurrences of man are eliminated of Every man is mortal, Socrates is a man to deduce Socrates is mortal.

Mathematical logic is a subfield of mathematics exploring the applications of formal logic to mathematics. It bears close connections to metamathematics, the foundations of mathematics, and theoretical computer science. The unifying themes in mathematical logic include the study of the expressive power of formal systems and the deductive power of formal proof systems.

Sequent calculus is, in essence, a style of formal logical argumentation where every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the style of natural deduction used by mathematicians than David Hilbert's earlier style of formal logic where every line was an unconditional tautology. There may be more subtle distinctions to be made; for example, there may be non-logical axioms upon which all propositions are implicitly dependent. Then sequents signify conditional theorems in a first-order language rather than conditional tautologies.

In propositional logic, modus ponens is a rule of inference. It can be summarized as "P implies Q and P is asserted to be true, therefore Q must be true."

Formal notation

Formal notation in sequent calculus notation :

cut

Elimination

The cut rule is the subject of an important theorem, the cut elimination theorem. It states that any judgement that possesses a proof in the sequent calculus that makes use of the cut rule also possesses a cut-free proof, that is, a proof that does not make use of the cut rule.

Related Research Articles

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and argument flow. Compound propositions are formed by connecting propositions by logical connectives. The propositions without logical connectives are called atomic propositions.

In propositional logic, modus tollens is a valid argument form and a rule of inference. It is an application of the general truth that if a statement is true, then so is its contra-positive.

In classical logic, hypothetical syllogism is a valid argument form which is a syllogism having a conditional statement for one or both of its premises.

In logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion. For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic, in the sense that if the premises are true, then so is the conclusion.

In programming language theory and proof theory, the Curry–Howard correspondence is the direct relationship between computer programs and mathematical proofs.

In logic, a substructural logic is a logic lacking one of the usual structural rules, such as weakening, contraction, exchange or associativity. Two of the more significant substructural logics are relevance logic and linear logic.

In mathematical logic, the deduction theorem is a metatheorem of propositional and first-order logic. It is a formalization of the common proof technique in which an implication A → B is proved by assuming A and then deriving B from this assumption conjoined with known results. The deduction theorem explains why proofs of conditional sentences in mathematics are logically correct. Though it has seemed "obvious" to mathematicians literally for centuries that proving B from A conjoined with a set of theorems is tantamount to proving the implication A → B based on those theorems alone, it was left to Herbrand and Tarski to show (independently) this was logically correct in the general case.

Monotonicity of entailment is a property of many logical systems that states that the hypotheses of any derived fact may be freely extended with additional assumptions. In sequent calculi this property can be captured by an inference rule called weakening, or sometimes thinning, and in such systems one may say that entailment is monotone if and only if the rule is admissible. Logical systems with this property are occasionally called monotonic logics in order to differentiate them from non-monotonic logics.

In proof theory, a structural rule is an inference rule that does not refer to any logical connective, but instead operates on the judgment or sequents directly. Structural rules often mimic intended meta-theoretic properties of the logic. Logics that deny one or more of the structural rules are classified as substructural logics.

The cut-elimination theorem is the central result establishing the significance of the sequent calculus. It was originally proved by Gerhard Gentzen in his landmark 1934 paper "Investigations in Logical Deduction" for the systems LJ and LK formalising intuitionistic and classical logic respectively. The cut-elimination theorem states that any judgement that possesses a proof in the sequent calculus making use of the cut rule also possesses a cut-free proof, that is, a proof that does not make use of the cut rule.

In mathematical logic, structural proof theory is the subdiscipline of proof theory that studies proof calculi that support a notion of analytic proof, a kind of proof whose semantic properties are exposed. When all the theorems of a logic formalised in a structural proof theory have analytic proofs, then the proof theory can be used to demonstrate such things as consistency, provide decision procedures, and allow mathematical or computational witnesses to be extracted as counterparts to theorems, the kind of task that is more often given to model theory.

In logic, a rule of inference is admissible in a formal system if the set of theorems of the system does not change when that rule is added to the existing rules of the system. In other words, every formula that can be derived using that rule is already derivable without that rule, so, in a sense, it is redundant. The concept of an admissible rule was introduced by Paul Lorenzen (1955).

In mathematical logic, the implicational propositional calculus is a version of classical propositional calculus which uses only one connective, called implication or conditional. In formulas, this binary operation is indicated by "implies", "if ..., then ...", "→", " ", etc..

In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

Minimalist grammars are a class of formal grammars that aim to provide a more rigorous, usually proof-theoretic, formalization of Chomskyan Minimalist program than is normally provided in the mainstream Minimalist literature. A variety of particular formalizations exist, most of them developed by Edward Stabler, Alain Lecomte, Christian Retoré, or combinations thereof.

In mathematical logic, the hypersequent framework is an extension of the proof-theoretical framework of sequent calculi used in structural proof theory to provide analytic calculi for logics which are not captured in the sequent framework. A hypersequent is usually taken to be a finite multiset of ordinary sequents, written