Family (biology)

Last updated

The hierarchy of biological classification's eight major taxonomic ranks. An order contains one or more families. Intermediate minor rankings are not shown. Biological classification L Pengo vflip.svg DomainKingdomClassOrderFamily
The hierarchy of biological classification's eight major taxonomic ranks. An order contains one or more families. Intermediate minor rankings are not shown.

Family (Latin : familia, pl.: familiae) is one of the nine major hierarchical taxonomic ranks in Linnaean taxonomy. It is classified between order and genus. [1] A family may be divided into subfamilies, which are intermediate ranks between the ranks of family and genus. The official family names are Latin in origin; however, popular names are often used: for example, walnut trees and hickory trees belong to the family Juglandaceae, but that family is commonly referred to as the "walnut family".

Contents

The delineation of what constitutes a family— or whether a described family should be acknowledged— is established and decided upon by active taxonomists. There are not strict regulations for outlining or acknowledging a family, yet in the realm of plants, these classifications often rely on both the vegetative and reproductive characteristics of plant species. Taxonomists frequently hold varying perspectives on these descriptions, leading to a lack of widespread consensus within the scientific community for extended periods. The continual publication of new data and diverse opinions plays a crucial role in facilitating adjustments and ultimately reaching a consensus over time.

Nomenclature

The naming of families is codified by various international bodies using the following suffixes:

History

The taxonomic term familia was first used by French botanist Pierre Magnol in his Prodromus historiae generalis plantarum, in quo familiae plantarum per tabulas disponuntur (1689) where he called the seventy-six groups of plants he recognised in his tables families (familiae). The concept of rank at that time was not yet settled, and in the preface to the Prodromus Magnol spoke of uniting his families into larger genera, which is far from how the term is used today.

In his work Philosophia Botanica published in 1751, Carl Linnaeus employed the term familia to categorize significant plant groups such as trees, herbs, ferns, palms, and so on. Notably, he restricted the use of this term solely within the book's morphological section, where he delved into discussions regarding the vegetative and generative aspects of plants. Subsequently, in French botanical publications, from Michel Adanson's Familles naturelles des plantes (1763) and until the end of the 19th century, the word famille was used as a French equivalent of the Latin ordo (or ordo naturalis ).

In zoology, the family as a rank intermediate between order and genus was introduced by Pierre André Latreille in his Précis des caractères génériques des insectes, disposés dans un ordre naturel (1796). He used families (some of them were not named) in some but not in all his orders of "insects" (which then included all arthropods).

In nineteenth-century works such as the Prodromus of Augustin Pyramus de Candolle and the Genera Plantarum of George Bentham and Joseph Dalton Hooker this word ordo was used for what now is given the rank of family.

Uses

Families serve as valuable units for evolutionary, paleontological, and genetic studies due to their relatively greater stability compared to lower taxonomic levels like genera and species. [5] [6]

See also

Related Research Articles

<span class="mw-page-title-main">Linnaean taxonomy</span> Rank based classification system for organisms

Linnaean taxonomy can mean either of two related concepts:

  1. The particular form of biological classification (taxonomy) set up by Carl Linnaeus, as set forth in his Systema Naturae (1735) and subsequent works. In the taxonomy of Linnaeus there are three kingdoms, divided into classes, and they, in turn, into lower ranks in a hierarchical order.
  2. A term for rank-based classification of organisms, in general. That is, taxonomy in the traditional sense of the word: rank-based scientific classification. This term is especially used as opposed to cladistic systematics, which groups organisms into clades. It is attributed to Linnaeus, although he neither invented the concept of ranked classification nor gave it its present form. In fact, it does not have an exact present form, as "Linnaean taxonomy" as such does not really exist: it is a collective (abstracting) term for what actually are several separate fields, which use similar approaches.

In biology, taxonomy is the scientific study of naming, defining (circumscribing) and classifying groups of biological organisms based on shared characteristics. Organisms are grouped into taxa and these groups are given a taxonomic rank; groups of a given rank can be aggregated to form a more inclusive group of higher rank, thus creating a taxonomic hierarchy. The principal ranks in modern use are domain, kingdom, phylum, class, order, family, genus, and species. The Swedish botanist Carl Linnaeus is regarded as the founder of the current system of taxonomy, as he developed a ranked system known as Linnaean taxonomy for categorizing organisms and binomial nomenclature for naming organisms.

Genus is a taxonomic rank used in the biological classification of living and fossil organisms as well as viruses. In the hierarchy of biological classification, genus comes above species and below family. In binomial nomenclature, the genus name forms the first part of the binomial species name for each species within the genus.

Order is one of the eight major hierarchical taxonomic ranks in Linnaean taxonomy. It is classified between family and class. In biological classification, the order is a taxonomic rank used in the classification of organisms and recognized by the nomenclature codes. An immediately higher rank, superorder, is sometimes added directly above order, with suborder directly beneath order. An order can also be defined as a group of related families.

<span class="mw-page-title-main">Taxon</span> Grouping of biological populations

In biology, a taxon is a group of one or more populations of an organism or organisms seen by taxonomists to form a unit. Although neither is required, a taxon is usually known by a particular name and given a particular ranking, especially if and when it is accepted or becomes established. It is very common, however, for taxonomists to remain at odds over what belongs to a taxon and the criteria used for inclusion, especially in the context of rank-based ("Linnaean") nomenclature. If a taxon is given a formal scientific name, its use is then governed by one of the nomenclature codes specifying which scientific name is correct for a particular grouping.

<i>International Code of Nomenclature for algae, fungi, and plants</i> Code of scientific nomenclature

The International Code of Nomenclature for algae, fungi, and plants is the set of rules and recommendations dealing with the formal botanical names that are given to plants, fungi and a few other groups of organisms, all those "traditionally treated as algae, fungi, or plants". It was formerly called the International Code of Botanical Nomenclature (ICBN); the name was changed at the International Botanical Congress in Melbourne in July 2011 as part of the Melbourne Code which replaced the Vienna Code of 2005.

<span class="mw-page-title-main">Botanical name</span> Scientific name for a plant, alga or fungus

A botanical name is a formal scientific name conforming to the International Code of Nomenclature for algae, fungi, and plants (ICN) and, if it concerns a plant cultigen, the additional cultivar or Group epithets must conform to the International Code of Nomenclature for Cultivated Plants (ICNCP). The code of nomenclature covers "all organisms traditionally treated as algae, fungi, or plants, whether fossil or non-fossil, including blue-green algae (Cyanobacteria), chytrids, oomycetes, slime moulds and photosynthetic protists with their taxonomically related non-photosynthetic groups ."

<span class="mw-page-title-main">Pierre Magnol</span> French botanist

Pierre Magnol was a French botanist. He was born in the city of Montpellier, where he lived and worked for most of his life. He became Professor of Botany and Director of the Royal Botanic Garden of Montpellier and held a seat in the Académie Royale des Sciences de Paris for a short while. He was one of the innovators who devised the botanical scheme of classification. He was the first to publish the concept of plant families as they are understood today, a natural classification of groups of plants that have features in common.

<span class="mw-page-title-main">International Association for Plant Taxonomy</span> Plant biodiversity organization

The International Association for Plant Taxonomy (IAPT) is an organization established to promote an understanding of plant biodiversity, facilitate international communication of research between botanists, and oversee matters of uniformity and stability in plant names. The IAPT was founded on July 18, 1950, at the Seventh International Botanical Congress in Stockholm, Sweden. The IAPT headquarters is located in Bratislava, Slovakia. Its president, since 2017, is Patrick S. Herendeen of the Chicago Botanic Garden; vice-president is Gonzalo Nieto Feliner of the Real Jardín Botánico, Madrid; and secretary-general is Karol Marhold of the Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava.

Botanical nomenclature is the formal, scientific naming of plants. It is related to, but distinct from taxonomy. Plant taxonomy is concerned with grouping and classifying plants; botanical nomenclature then provides names for the results of this process. The starting point for modern botanical nomenclature is Linnaeus' Species Plantarum of 1753. Botanical nomenclature is governed by the International Code of Nomenclature for algae, fungi, and plants (ICN), which replaces the International Code of Botanical Nomenclature (ICBN). Fossil plants are also covered by the code of nomenclature.

Nomenclature codes or codes of nomenclature are the various rulebooks that govern the naming of living organisms. Standardizing the scientific names of biological organisms allows researchers to discuss findings.

In botany, the correct name according to the International Code of Nomenclature for algae, fungi, and plants (ICN) is the one and only botanical name that is to be used for a particular taxon, when that taxon has a particular circumscription, position and rank. Determining whether a name is correct is a complex procedure. The name must be validly published, a process which is defined in no less than 16 Articles of the ICN. It must also be "legitimate", which imposes some further requirements. If there are two or more legitimate names for the same taxon, then the correct name is the one which has priority, i.e. it was published earliest, although names may be conserved if they have been very widely used. Validly published names other than the correct name are called synonyms. Since taxonomists may disagree as to the circumscription, position or rank of a taxon, there can be more than one correct name for a particular plant. These may also be called synonyms.

In botanical nomenclature, author citation is the way of citing the person or group of people who validly published a botanical name, i.e. who first published the name while fulfilling the formal requirements as specified by the International Code of Nomenclature for algae, fungi, and plants (ICN). In cases where a species is no longer in its original generic placement, both the authority for the original genus placement and that for the new combination are given.

In botany, the phrase ordo naturalis, 'natural order', was once used for what today is a family. Its origins lie with Carl Linnaeus who used the phrase when he referred to natural groups of plants in his lesser-known work, particularly Philosophia Botanica. In his more famous works the Systema Naturae and the Species Plantarum, plants were arranged according to his artificial "Sexual system", and Linnaeus used the word ordo for an artificial unit. In those works, only genera and species were "real" taxa.

<span class="mw-page-title-main">Lilianae</span> Order of flowering plants

Lilianae is a botanical name for a superorder of flowering plants. Such a superorder of necessity includes the type family Liliaceae. Terminations at the rank of superorder are not standardized by the International Code of Nomenclature for algae, fungi, and plants (ICN), although the suffix -anae has been proposed.

<span class="mw-page-title-main">James L. Reveal</span> 20th century American botanist known for contributions to taxonomy

James Lauritz Reveal was a U.S. botanist best known for his contributions to the genus Eriogonum and for his work on suprageneric names. His website, at PlantSystematics.org, also presents material on plant taxonomy including the Reveal system. He published extensively on North American flora, was a member of the Angiosperm Phylogeny Group, and was one of the authors of the APG II and APG III classifications.

<span class="mw-page-title-main">Taxonomic rank</span> Level in a taxonomic hierarchy

In biology, taxonomic rank is the relative level of a group of organisms in an ancestral or hereditary hierarchy. A common system of biological classification (taxonomy) consists of species, genus, family, order, class, phylum, kingdom, and domain. While older approaches to taxonomic classification were phenomenological, forming groups on the basis of similarities in appearance, organic structure and behaviour, methods based on genetic analysis have opened the road to cladistics.

<i>Critica Botanica</i>

Critica Botanica was written by Swedish botanist, physician, zoologist and naturalist Carl Linnaeus (1707–1778). The book was published in Germany when Linnaeus was 29 with a discursus by the botanist Johannes Browallius (1707–1755), bishop of Åbo. The first edition was published in July 1737 under the full title Critica botanica in qua nomina plantarum generica, specifica & variantia examini subjiciuntur, selectoria confirmantur, indigna rejiciuntur; simulque doctrina circa denominationem plantarum traditur. Seu Fundamentorum botanicorum pars IV Accedit Johannis Browallii De necessitate historiae naturalis discursus.

<span class="mw-page-title-main">Glossary of scientific naming</span>

This is a list of terms and symbols used in scientific names for organisms, and in describing the names. For proper parts of the names themselves, see List of Latin and Greek words commonly used in systematic names. Note that many of the abbreviations are used with or without a stop.

<span class="mw-page-title-main">Burmanniales</span> Extinct order of flowering plants

BurmannialesMart. was an order of monocotyledons, subsequently discontinued.

References

  1. "Taxonomy - Definition, Classification & Example". Biology Dictionary. 19 March 2017. Retrieved 10 October 2022.
  2. Barnhart JH (15 January 1895). "Family Nomenclature". Bulletin of the Torrey Botanical Club. 22 (1): 1–25. doi:10.2307/2485402. JSTOR   2485402.
  3. ICN 2012, Section 2. Names of families and subfamilies, tribes and subtribes Article 18.
  4. International Commission on Zoological Nomenclature (1999). "Article 29.2. Suffixes for family-group names". International Code of Zoological Nomenclature (Fourth ed.). International Trust for Zoological Nomenclature, XXIX. p. 306. Archived from the original on 9 November 2004.
  5. Sahney S, Benton MJ, Ferry PA (August 2010). "Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land". Biology Letters. 6 (4): 544–547. doi:10.1098/rsbl.2009.1024. PMC   2936204 . PMID   20106856.
  6. Sahney S, Benton MJ (April 2008). "Recovery from the most profound mass extinction of all time". Proceedings. Biological Sciences. 275 (1636): 759–765. doi:10.1098/rspb.2007.1370. PMC   2596898 . PMID   18198148.

Bibliography