HD 85512 b

Last updated
HD 85512 b
HD 85512 Planetary system.jpg
Artist’s impression of the rocky super-Earth HD 85512 b
Discovery
Discovered by Pepe et al.
Discovery site La Silla Observatory
Discovery dateAugust 17, 2011
Radial velocity (HARPS)
Orbital characteristics
(0.26 ± 0.005) [1] AU
Eccentricity (0.11 ± 0.1) [1]
54.43 (± 0.13) [1] d
Average orbital speed
94.913 ± 0.038
Star HD 85512
Physical characteristics
Mean radius
≥1.3(?) R🜨
Mass 3.6 ± 0.5 ME
~1.4
Temperature 298 K (25 °C; 77 °F) [2]

    HD 85512 b is a currently-disputed exoplanet orbiting HD 85512, a K-type main-sequence star approximately 37 light-years from Earth in the constellation of Vela. [3] [1]

    Contents

    Due to its mass of at least 3.6 times the mass of Earth, HD 85512 b is classified as a rocky Earth-size exoplanet (< 5M🜨) and is one of the smallest exoplanets discovered to be just outside the inner edge of the habitable zone. [1] HD 85512 b, along with Gliese 581 d, was once considered to be one of the best candidates for habitability in 2011. [4]

    Physical characteristics

    Mass, radius and temperature

    The planet has a minimum Earth mass of 3.6 ± 0.5, minimum surface gravity of about 1.4 g and assuming an atmosphere like Earth's despite its far greater mass, an estimated temperature of 298 K (24.85 °C or 76.73 °F) at the top of its atmosphere. The estimated temperature is noted to be similar to temperatures in Southern France, [2] [5] but various atmospheric conditions prevalent in the planet have to be analyzed to estimate the temperature of the surface. [2] An estimated radius of 1.3 R🜨 is possible based on its mass.

    Host star

    The planet orbits a (K-type) star named HD 85512. The star has a mass of 0.69 M and a radius of around 0.53 R. It has a surface temperature of 4715 K and is 5.61 billion years old. In comparison, the Sun is about 4.6 billion years old [6] and has a surface temperature of 5778 K. [7]

    The star's apparent magnitude, or how bright it appears from Earth's perspective, is 7.43 Therefore, HD 85512 is too dim to be seen with the naked eye, but can be viewed using good binoculars.

    Orbit

    The planet orbits the parent star (which has about 11% of the Sun's luminosity) at a distance of about 0.26 AU, [4] with an orbital period of about 54 days, [4] and is possibly tidally locked.

    Habitability and climate

    Plot of the orbit of HD 85512 b compared to the star's habitable zone. HD85512bWithHZ.svg
    Plot of the orbit of HD 85512 b compared to the star's habitable zone.

    Models generated by Pepe et al (2011) suggest that for the temperature to be below 270 K (-3.15 °C), for a circular orbit, the planetary albedo should be 0.48 ± 0.05 and for an eccentricity of 0.11, the planetary albedo should be 0.52. [1] If the planet has 50% cloud cover, water may exist in liquid form on the planet [8] provided its atmosphere is similar to our own, thus increasing the planet's habitability potential. [9] [10] [11] Also, if the albedo of the planet is increased due to cloud cover, water could be present in its liquid form on the planet, which would mean that the planet is on the edge of the habitability zone. [1] [11]

    However, PHL's new definition of the circumstellar habitable zone classifies this planet in the "too hot" zone, and it considers the planet "not habitable". [12]

    The planet would likely be inhospitable because of a runaway greenhouse effect on its surface. Any oceans on its surface would have boiled away due to the high stellar flux, and as this occurred, the temperature would have risen to around 322 K (49 °C; 120 °F). The water vapor would have accumulated in the atmosphere to the point where the surface temperature would rise to around 500 K (227 °C; 440 °F) as the planet would have been overwhelmed by water vapor—a powerful greenhouse gas. [13] Little amounts of carbon dioxide would have been present, as HD 85512 b was probably an ocean planet (with little to no landmasses) very shortly after its star was formed into the main sequence, before the stellar flux increased to its estimated present state. The surface pressure would have also increased to about 100 times Earth's surface pressure (100 kilopascals, 100 atm) because of the amount of water vapor in the atmosphere. Thus, HD 85512 b is likely a desert planet rather than an ocean planet because of the increased stellar flux.

    Discovery

    HD 85512 b was discovered by scientists at University of Geneva, Switzerland, [4] [9] led by Swiss astronomer Stéphane Udry [8] of the Guaranteed Time Observations (GTO) program of High Accuracy Radial velocity Planet Searcher (HARPS), a high-precision echelle spectrograph installed on ESO's 3.6 m telescope at La Silla Observatory in Chile. [2] The team used the Doppler spectroscopy technique which determines the minimum mass of the planet through slight changes in motion of the parent star. It was discovered on August 17, 2011.

    On August 17, 2011, researchers released a study of the planet. The study makes assumptions about the planet actually having the minimum mass allowed by existing observations, not being tidally locked, and having one specific composition out of the wide parameter set available to conclude that HD 85512 b is the most habitable exoplanet discovered up to that point [1] and one of the most stable exoplanets discovered by the High Accuracy Radial Velocity Planet Searcher. [2]

    In 2023, a study reassessed the radial velocity data of HD 85512. A signal was detected with a period of 51 days, inconsistent with the previously published 58-day orbital period of HD 85512 b, but consistent with previous estimates of the stellar rotation period. This indicates that the signal is very likely to be caused by the stellar rotation, rather than an orbiting planet. [14] :25–27 [14] :44

    Possibility as target for interstellar probe

    Reaching this planet at the current record spacecraft speed, the Helios Probes' 247,517 kilometres per hour (153,800 mph), would take 156,971 years. [15] Travelling at the record speed of a manned spacecraft, which is Apollo 10's top speed of 39,897 kilometres per hour (24,791 mph), it would take 979,242 years to reach the planet.

    See also

    Related Research Articles

    <span class="mw-page-title-main">Exoplanet</span> Planet outside the Solar System

    An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not then recognized as such. The first confirmation of the detection occurred in 1992. A different planet, first detected in 1988, was confirmed in 2003. As of 1 May 2024, there are 5,662 confirmed exoplanets in 4,169 planetary systems, with 896 systems having more than one planet. The James Webb Space Telescope (JWST) is expected to discover more exoplanets, and to give more insight into their traits, such as their composition, environmental conditions, and potential for life.

    <span class="mw-page-title-main">Habitable zone</span> Orbits where planets may have liquid surface water

    In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.

    Gliese 581 is a red dwarf star of spectral type M3V at the center of the Gliese 581 planetary system, about 20.5 light years away from Earth in the Libra constellation. Its estimated mass is about a third of that of the Sun, and it is the 101st closest known star system to the Sun. Gliese 581 is one of the oldest, least active M dwarfs known. Its low stellar activity improves the likelihood of its planets retaining significant atmospheres, and lessens the sterilizing impact of stellar flares.

    <span class="mw-page-title-main">Gliese 876 b</span> Extrasolar planet orbiting Gliese 876

    Gliese 876 b is an exoplanet orbiting the red dwarf Gliese 876. It completes one orbit in approximately 61 days. Discovered in June 1998, Gliese 876 b was the first planet to be discovered orbiting a red dwarf.

    <span class="mw-page-title-main">HD 69830 d</span> Ice giant exoplanet orbiting HD 69830

    HD 69830 d is an exoplanet likely orbiting within the habitable zone of the star HD 69830, the outermost of three such planets discovered in the system. It is located approximately 40.7 light-years (12.49 parsecs, or 3.8505×1014 km) from Earth in the constellation of Puppis. The exoplanet was found by using the radial velocity method, from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star.

    <span class="mw-page-title-main">Gliese 581c</span> Super-Earth exoplanet orbiting Gliese 581

    Gliese 581c is an exoplanet orbiting within the Gliese 581 system. It is the second planet discovered in the system and the third in order from the star. With a mass at least 5.5 times that of the Earth, it is classified as a super-Earth.

    <span class="mw-page-title-main">Gliese 581d</span> Contested super-Earth orbiting Gliese 581

    Gliese 581d is a doubtful, and frequently disputed, exoplanet candidate orbiting within the Gliese 581 system, approximately 20.4 light-years away in the Libra constellation. It was the third planet claimed in the system and the fourth or fifth in order from the star. Multiple subsequent studies found that the planetary signal in fact originates from stellar activity, and thus the planet does not exist, but this remains disputed.

    <span class="mw-page-title-main">Super-Earth</span> Type of exoplanet

    A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

    <span class="mw-page-title-main">Stéphane Udry</span> Swiss astronomer

    Stéphane Udry is an astronomer at the Geneva Observatory in Switzerland, whose current work is primarily the search for extra-solar planets. He and his team, in 2007, discovered a possibly terrestrial planet in the habitable zone of the Gliese 581 planetary system, approximately 20 light years away in the constellation Libra. He also led the observational team that discovered HD 85512 b, another most promisingly habitable exoplanet.

    HD 85512 is a solitary K-type main-sequence star 36.8 light-years away in the constellation Vela. It is about 1 billion years older than the Sun. It is extremely chromospherically inactive, only slightly more active than Tau Ceti. It exhibits a long-term variability and was thought to host one low-mass planet, although this is now doubtful.

    <span class="mw-page-title-main">Gliese 581e</span> Terrestrial planet orbiting Gliese 581

    Gliese 581e or Gl 581e is an exoplanet orbiting within the Gliese 581 system, located approximately 20.4 light-years away from Earth in the Libra constellation. It is the third planet discovered in the system and the first in order from the star.

    <span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

    An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 May 2024, there are 5,662 confirmed exoplanets in 4,169 planetary systems, with 896 systems having more than one planet. This is a list of the most notable discoveries.

    <span class="mw-page-title-main">Gliese 581g</span> Former candidate super-Earth orbiting Gliese 581

    Gliese 581g was a candidate exoplanet postulated to orbit within the Gliese 581 system, twenty light-years from Earth. It was discovered by the Lick–Carnegie Exoplanet Survey, and was the sixth planet claimed to orbit the star; however, its existence could not be confirmed by the European Southern Observatory (ESO) / High Accuracy Radial Velocity Planet Searcher (HARPS) survey team, and was ultimately refuted. It was thought to be near the middle of the habitable zone of its star, meaning it could sustain liquid water—a necessity for all known life—on its surface, if there are favorable atmospheric conditions on the planet.

    <span class="mw-page-title-main">Kepler-22b</span> Super-Earth exoplanet orbiting Kepler-22

    Kepler-22b is an exoplanet orbiting within the habitable zone of the Sun-like star Kepler-22. It is located about 640 light-years from Earth in the constellation of Cygnus. It was discovered by NASA's Kepler Space Telescope in December 2011 and was the first known transiting planet to orbit within the habitable zone of a Sun-like star, where liquid water could exist on the planet's surface. Kepler-22 is too dim to be seen with the naked eye.

    <span class="mw-page-title-main">Gliese 667 Cc</span> Goldilocks super-Earth orbiting Gliese 667 C

    Gliese 667 Cc is an exoplanet orbiting within the habitable zone of the red dwarf star Gliese 667 C, which is a member of the Gliese 667 triple star system, approximately 23.62 light-years away in the constellation of Scorpius. The exoplanet was found by using the radial velocity method, from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star.

    HD 219134 g, also known as HR 8832 g, is an unconfirmed exoplanet orbiting around the K-type star HD 219134 in the constellation of Cassiopeia. It has a minimum mass of 11 or 15 Earth masses, suggesting that it is likely a Neptune-like ice giant. Unlike HD 219134 b and HD 219134 c it is not observed to transit and thus its radius and density are unknown. If it has an Earth-like composition, it would have a radius 1.9 times that of Earth. However, since it is probably a Neptune-like planet, it is likely larger.

    <span class="mw-page-title-main">Ross 128 b</span> Confirmed terrestrial exoplanet orbiting Ross 128

    Ross 128 b is a confirmed Earth-sized exoplanet, likely rocky, that is orbiting within the inner habitable zone of the red dwarf star Ross 128, at a distance of around 11 light-years from Earth. The exoplanet was found using a decade's worth of radial velocity data using the European Southern Observatory's HARPS spectrograph at the La Silla Observatory in Chile. Ross 128 b is the nearest exoplanet around a quiet red dwarf, and is considered one of the best candidates for habitability. The planet is only 35% more massive than Earth, receives only 38% more starlight, and is expected to be a temperature suitable for liquid water to exist on the surface, if it has an atmosphere.

    Luyten b is a confirmed exoplanet, likely rocky, orbiting within the habitable zone of the nearby red dwarf Luyten's Star. It is the fourth-closest potentially habitable exoplanet known, at a distance of 12 light-years. Only Proxima Centauri b, Ross 128 b, and GJ 1061 d are closer. Discovered alongside Gliese 273c in June 2017, Luyten b is a super-Earth of around 2.89 times the mass of Earth and receives only 6% more starlight than Earth, making it one of the best candidates for habitability.

    References

    1. 1 2 3 4 5 6 7 8 Kaltenegger, L; Udry, S; Pepe, F (2011). "A Habitable Planet around HD 85512?". arXiv: 1108.3561 . Bibcode:2011arXiv1108.3561K.{{cite journal}}: Cite journal requires |journal= (help)
    2. 1 2 3 4 5 "HARPS: Hunting for Nearby Earth-like Planets". centauri-dreams.org. Retrieved 2011-08-25.
    3. Pepe, F; et al. (2011). "The HARPS search for Earth-like planets in the habitable zone: I – Very low-mass planets around HD20794, HD85512 and HD192310". Astronomy & Astrophysics. 534: A58. arXiv: 1108.3447 . Bibcode:2011A&A...534A..58P. doi:10.1051/0004-6361/201117055. S2CID   15088852.
    4. 1 2 3 4 "Researchers find potentially habitable planet" (in French). maxisciences.com. 30 August 2011. Retrieved 2011-08-31.
    5. "Italian helps find planet that could sustain life". La Gazzetta del Mezzogiorno . September 2, 2011. Archived from the original on July 14, 2012. Retrieved September 7, 2011.
    6. Fraser Cain (16 September 2008). "How Old is the Sun?". Universe Today . Retrieved 19 February 2011.
    7. Fraser Cain (September 15, 2008). "Temperature of the Sun". Universe Today. Retrieved 19 February 2011.
    8. 1 2 "Super Earth circulating in ekosferze?" (in Polish). technologie.gazeta.pl. 19 August 2011. Retrieved 2011-08-31.
    9. 1 2 "Found a planet where life could exist" (in Lithuanian). maxisciences.com. Retrieved 2011-08-31.
    10. "Exoplanet Looks Potentially Lively". scientificamerican.com. Retrieved 2011-08-25.
    11. 1 2 "Is There A Habitable Planet Circling HD 85512?". spaceref.com. 30 August 2011. Retrieved 2011-08-31.[ permanent dead link ]
    12. "A New Habitable Zone - Planetary Habitability Laboratory @ UPR Arecibo". Archived from the original on 2019-12-11. Retrieved 2015-08-15.
    13. "Greenhose lecture". csep10.phys.utk.edu. Retrieved 2023-05-08.
    14. 1 2 Laliotis, Katherine; Burt, Jennifer A.; Mamajek, Eric E.; et al. (22 February 2023). "Doppler Constraints on Planetary Companions to Nearby Sun-like Stars: An Archival Radial Velocity Survey of Southern Targets for Proposed NASA Direct Imaging Missions". The Astronomical Journal. 165 (4): 176. arXiv: 2302.10310 . Bibcode:2023AJ....165..176L. doi: 10.3847/1538-3881/acc067 . S2CID   257050346.
    15. "The World's Top 12 Fastest Vehicles". Popular Mechanics. 13 July 2011.