Open cluster remnant

Last updated

In astronomy, an open cluster remnant (OCR) is the final stage in the evolution of an open star cluster.

Astronomy natural science that deals with the study of celestial objects

Astronomy is a natural science that studies celestial objects and phenomena. It applies mathematics, physics, and chemistry in an effort to explain the origin of those objects and phenomena and their evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, and comets; the phenomena also includes supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, all phenomena that originate outside Earth's atmosphere are within the purview of astronomy. A branch of astronomy called cosmology is the study of the Universe as a whole.

Contents

Theory

Viktor Ambartsumian (1938) and Lyman Spitzer (1940) showed that, from a theoretical point of view, it was impossible for a star cluster to evaporate completely; furthermore, Spitzer pointed out two possible final results for the evolution of a star cluster: evaporation provokes physical collisions between stars, or evaporation proceeds until a stable binary or higher multiplicity system is produced.

Lyman Spitzer American astronomer

Lyman Strong Spitzer, Jr. was an American theoretical physicist, astronomer and mountaineer. As a scientist, he carried out research into star formation, plasma physics, and in 1946, conceived the idea of telescopes operating in outer space. Spitzer invented the stellarator plasma device and is the namesake of NASA's Spitzer Space Telescope. As a mountaineer, he made the first ascent of Mount Thor, with Donald C. Morton.

Star cluster group of stars

Star clusters are groups of stars. Two types of star clusters can be distinguished: globular clusters are tight groups of hundreds or thousands of very old stars which are gravitationally bound, while open clusters, more loosely clustered groups of stars, generally contain fewer than a few hundred members, and are often very young. Open clusters become disrupted over time by the gravitational influence of giant molecular clouds as they move through the galaxy, but cluster members will continue to move in broadly the same direction through space even though they are no longer gravitationally bound; they are then known as a stellar association, sometimes also referred to as a moving group.

Observations

Using objective-prism plates, Lodén (1987, 1988, 1993) has investigated the possible population of open cluster remnants in our Galaxy under the assumption that the stars in these clusters should have similar luminosity and spectral type. He found that about 30% of the objects in his sample could be catalogued as a possible type of cluster remnant. The membership for these objects is ≥ 15. The typical age of these systems is about 150 Myr with a range of 50-200 Myr. They show a significant density of binaries and a large number of optical binaries. The stars of these OCRs have a trend to be massive and hence early-type (A-F) stars although this observational method includes a noticeable selection effect because bright early-type spectra are easier to detect than fainter and later ones. In fact, almost no stars with spectral type later than F appear among his objects. On the other hand, his results were not fully conclusive because there are known regions in the sky with many stars of the same spectral type but in which it is difficult to find two stars with the same proper motions or radial velocity. A striking example of this fact is Upgren 1; initially, it was suggested that this small group of seven F stars was the remnant of an old cluster (Upgren & Rubin 1965) but later, Gatewood et al. (1988) concluded that Upgren 1 is only a chance alignment of F stars resulting from the close passage of members of two dynamically different sets of stars. Very recently, Stefanik et al. (1997) have shown that one of the sets is formed by 5 stars including a long-period binary and an unusual triple system.

Galaxy Gravitationally bound astronomical structure

A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas, dust, and dark matter. The word galaxy is derived from the Greek galaxias (γαλαξίας), literally "milky", a reference to the Milky Way. Galaxies range in size from dwarfs with just a few hundred million stars to giants with one hundred trillion stars, each orbiting its galaxy's center of mass.

Luminosity total amount of energy emitted by an object per unit time

In astronomy, luminosity is the total amount of energy emitted per unit of time by a star, galaxy, or other astronomical object. As a term for energy emitted per unit time, luminosity is synonymous with power.

Radial velocity

The radial velocity of an object with respect to a given point is the rate of change of the distance between the object and the point. That is, the radial velocity is the component of the object's velocity that points in the direction of the radius connecting the object and the point. In astronomy, the point is usually taken to be the observer on Earth, so the radial velocity then denotes the speed with which the object moves away from or approaches the Earth.

Simulations

Regarding numerical simulations, for systems with some 25 to 250 stars, von Hoerner (1960, 1963), Aarseth (1968) and van Albada (1968) suggested that the final outcome of the evolution of an open cluster is one or more tightly bound binaries (or even a hierarchical triple system). Van Albada pointed out several observational candidates (σ Ori, ADS 12696, ρ Oph, 1 Cas, 8 Lac and 67 Oph) as being OCRs and Wielen (1975) indicated another one, the Ursa Major moving group (Collinder 285).

Sebastian Rudolf Karl von Hoerner was a German astrophysicist and radio astronomer.

Sverre Johannes Aarseth, is a research scientist at the Institute of Astronomy at the University of Cambridge. Although retired, Aarseth is still an active researcher. He has dedicated his career to the development of N-body codes. He is the author of the NBODY family of codes, the current iteration is NBODY7. His current areas of research include the effects of stellar evolution in N-body codes, the influence of black holes on stellar systems, the evolution of globular clusters, and the use of GPUs to increase the speed of his codes.

Related Research Articles

Planetary nebula Type of emission nebula

A planetary nebula, abbreviated as PN or plural PNe, is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives.

Hyades (star cluster) star cluster

The Hyades is the nearest open cluster and one of the best-studied star clusters. Located about 153 light-years away from the Sun, it consists of a roughly spherical group of hundreds of stars sharing the same age, place of origin, chemical characteristics, and motion through space. From the perspective of observers on Earth, the Hyades Cluster appears in the constellation Taurus, where its brightest stars form a "V" shape along with the still-brighter Aldebaran. However, Aldebaran is unrelated to the Hyades, as it is located much closer to Earth and merely happens to lie along the same line of sight.

Quasi-satellite

A quasi-satellite is an object in a specific type of co-orbital configuration with a planet where the object stays close to that planet over many orbital periods.

Messier 73 Asterism of four stars

Messier 73 is an asterism of four stars in the constellation of Aquarius. An asterism is composed of physically unconnected stars that appear close to each other in the sky as seen from Earth.

Scutum–Centaurus Arm spiral arm of the Milky Way Galaxy

The Scutum–Centaurus Arm, also known as Scutum-Crux arm, is a long, diffuse curving streamer of stars, gas and dust that spirals outward from the proximate end of the Milky Way's central bar. The Milky Way has been assumed since the 1950s to have four spiral arms although the evidence for this has never been strong. In 2008, observations using the Spitzer Space Telescope failed to show the expected density of red clump giants in the direction of the Sagittarius and Norma arms. In January 2014, a 12-year study into the distribution and lifespan of massive stars and a study of the distribution of masers and open clusters both found evidence for four spiral arms.

Mount Lemmon Survey (MLS) is a part of the Catalina Sky Survey with observatory code G96. MLS uses a 1.52 m (60 in) cassegrain reflector telescope operated by the Steward Observatory at Mount Lemmon Observatory, which is located at 2,791 meters (9,157 ft) in the Santa Catalina Mountains northeast of Tucson, Arizona.

NGC 4463 is an open cluster in the constellation Musca. The young planetary nebula He 2-86 is believed to be a member of the cluster.

Westerlund 2

Westerlund 2 is an obscured compact young star cluster in the Milky Way, with an estimated age of about one or two million years. It contains some of the hottest, brightest, and most massive stars known. The cluster resides inside a stellar breeding ground known as Gum 29, located 20,000 light-years away in the constellation Carina. It is half a degree from the naked eye Cepheid variable V399 Carinae.

NGC 5466 globular cluster

NGC 5466 is a class XII globular cluster in the constellation Boötes. Located 51,800 light years from Earth and 52,800 light years from the galactic center, it was discovered by William Herschel on May 17, 1784, as H VI.9. This globular cluster is unusual insofar as it contains a certain blue horizontal branch of stars, as well as being unusually metal poor like ordinary globular clusters. It is thought to be the source of a stellar stream discovered in 2006, called the 45 Degree Tidal Stream. This star stream is an approximately 1.4° wide star lane extending from Boötes to Ursa Major.

In astronomy, an open cluster family is a group of approximately coeval young open star clusters located in a relatively small region of the Galactic disk.

Circinus X-1 binary star in the constellation Circinus

Not to be confused with Cygnus X-1

<span class="nowrap">(311999) 2007 NS<sub>2</sub></span> asteroid

(311999) 2007 NS2 is an asteroid and Mars trojan orbiting near the L5 point of Mars.

Trumpler 14

Trumpler 14 is an open cluster with a diameter of six light-years (1.8 pc), located within the inner regions of the Carina Nebula, approximately 8,980 light-years (2,753 pc) from Earth. Together with the nearby Trumpler 16, they are the main clusters of the Carina OB1 stellar association, which is the largest association in the Carina Nebula, although Trumpler 14 is not as massive or as large as Trumpler 16.

WR 21a star

WR 21a is a binary star in the constellation Carina. It includes one of the most massive known stars and is one of the most massive binaries.

XX Persei star

XX Persei is a semiregular variable red supergiant star in the constellation Perseus, between the Double Cluster and the border with Andromeda.

NGC 1901 open cluster in the constellation Dorado

NGC 1901 is an open cluster in the Dorado Constellation. It has a bright middle and is a little rich, with stars from 7th magnitude downwards. The celestial object was discovered on 30 December 1836 by the British astronomer John Herschel. The cluster is sparsely populated with GAIA data suggesting a membership of around 80 stars. It is considered unlikely it will survive its next pass through the Milky Way’s galactic plane in about 18 million years time.

U Lacertae Variable star

U Lacertae is a spectroscopic binary star in the constellation Lacerta.

WR 12 is a spectroscopic binary in the constellation Vela. It is an eclipsing binary consisting of a Wolf-Rayet star and a luminous companion of unknown spectral type. The primary is one of the most luminous stars known.

NGC 5617 open cluster in Centaurus

NGC 5617 is an open cluster in the constellation Centaurus. NGC 5617 forms a binary open cluster with Trumpler 22. It lies one degree west-northwest of Alpha Centauri.

References

Further reading