Engine tuning

Last updated
Vintage engine testing equipment that can test ignition timing, ignition dwell, manifold vacuum and exhaust emissions Sun 800 tester-001.jpg
Vintage engine testing equipment that can test ignition timing, ignition dwell, manifold vacuum and exhaust emissions

Engine tuning is the adjustment or modification of the internal combustion engine or Engine Control Unit (ECU) to yield optimal performance and increase the engine's power output, economy, or durability. These goals may be mutually exclusive; an engine may be de-tuned with respect to output power in exchange for better economy or longer engine life due to lessened stress on engine components.

Contents

Tuning can include a wide variety of adjustments and modifications, such as the routine adjustment of the carburetor and ignition system to significant engine overhauls. Performance tuning of an engine can involve revising some of the design decisions taken during the development of the engine.

Setting the idle speed, air-fuel ratio, carburetor balance, spark plug and distributor point gaps, and ignition timing were regular maintenance tasks for older engines and are the final but essential steps in setting up a racing engine. On modern engines equipped with electronic ignition and fuel injection, some or all of these tasks are automated but they still require initial calibration of the controls. The ECU handles these tasks, and must be calibrated properly to match the engine's hardware. [1] [2]

Engine tune-up

The term "tune-up" usually denotes the routine servicing of the engine to meet the manufacturer's specifications. Tune-ups are needed periodically according to the manufacturer's recommendations to ensure the vehicle runs as expected. Modern automobile engines typically require a small number of tune-ups over the course of an approximate 250,000-kilometre (160,000 mi) or a 10-year, lifespan. This can be attributed to improvements in the production process in which imperfections and errors reduced by computer automation, and significant improvement in the quality of consumables such as the availability of synthetic engine oil.

Tune-ups may include the following:

The term "Italian tuneup" denotes the driving of a performance car, such as a Ferrari, by mechanics finishing the tune-up to burn out any built-up carbon.

Chip tuning

Modern engines are equipped with an engine management system (EMS)/Engine Control Unit (ECU) that can be adjusted to different settings, producing different performance levels. Manufacturers often produce a few engines that are used in a wider range of models and platforms. This allows the manufacturers to sell automobiles in various markets with different regulations without having to spend money developing and designing different engines to fit these regulations. This also allows a single engine tuned to suit the particular buyer's market to be used by several brands.

Remapping

Remapping is the simplest form of stage one engine tuning; it is performed mostly on turbocharged vehicles containing a modern Engine Control Unit (ECU). Almost all modern vehicles have an ECU, primarily supplied by Bosch or Delphi Technologies. The ECU has firmware that controls the various parameters under which the engine runs. These parameters include achieving the appropriate balance between fuel consumption, power, torque, fuel emissions, reliability and service intervals. In seeking this balance many factory firmwares do not prioritise power or torque, which means it is possible to increase the performance of the engine by remapping the ECU.

Many manufacturers build one engine and use several firmware versions, known as maps, to achieve different power levels to differentiate vehicles that essentially have an identical engine. This gives users an opportunity to unlock more power from the engine with a few changes to the factory software by reading and editing the factory firmware from the ECU using specialist tools plugged into the on-board diagnostics (OBD) port. The tools can be connected to the OBD port on any car to read the factory file that is saved on the ECU. Software to read specific types of factory files is available.

Parameters of factory files such as fuel injection, boost pressure, rail pressure, fuel pump pressure and ignition timing, are adjusted to safe limits that are set by an expert so the unlocked performance does not compromise the car's safe levels of reliability, fuel consumption and emissions. The map may be customized for city use, for on-track performance, or for an overall map giving power throughout the band in a linear manner. Once adjusted, the edited file is written back to the ECU with the same tools used for the initial reading, after which the engine is tested for performance, smoke levels, and any problems. Fine-tuning is done according to the feedback, producing a better-performing and more efficient engine.

Remapping may increase the temperature of exhaust fumes.

Performance tuning

Performance tuning is the tuning of an engine for motorsports. Many such automobiles may never compete but are built for show or leisure driving. In this context, the power output (e.g. In horsepower), torque, and responsiveness of the engine are of premium importance, but reliability and fuel efficiency are also relevant. In races, the engine must be strong enough to withstand the additional stress placed upon it and the automobile must carry sufficient fuel, so it is often far stronger and has higher performance than the mass-produced design on which it may be based. The transmission, driveshaft and other load-transmitting powertrain components may need to be modified to withstand the load from the increased power.

There are many techniques that can be used to increase the power and/or efficiency of an engine. This can be achieved by modifying the air-fuel mixture drawn into the engine, modifying the static or dynamic compression ratio of the engine, modifying the fuel used (e.g. higher octane, different fuel types or chemistries), injection of water or methanol, modifying the timing and dwell of ignition events, and compressing the intake air. Air fuel ratio meters are used to accurately measure the amount of fuel in the mixture. Fuel weight will affect the performance of the car, so fuel economy (thus efficiency) is a competitive advantage.

Ways to increase power include:

The choice of modification depends on the degree of performance enhancement desired, budget, and the characteristics of the engine to be modified. Intake, exhaust, and chip upgrades are usually among the first modifications made because they are the cheapest and make reasonably general improvements. A change of camshaft, for instance, requires a compromise between smoothness at low engine speeds and improvements at high engine speeds.

Definitions

Overhaul

An overhauled engine is one that has been removed, disassembled, cleaned, inspected, repaired as necessary and tested using factory service manual approved procedures. The procedure generally involves honing, new piston rings, bearings, gaskets and oil seals. The engine may be overhauled to 'new limits' or 'service limits', or a combination of the two using used parts, new original equipment manufacturer (OEM) parts, or new aftermarket parts. The engine's previous operating history is maintained and it is returned with zero hours since major overhaul.

Aftermarket part manufacturers are often the OEM part-suppliers to major engine manufacturers. [4]

A "top overhaul" is composed of the replacement of components inside the cylinder head without removing the engine from the vehicle, such as valve and rocker arm replacement. It may include a "valve job". A "major overhaul" is composed of the whole engine assembly, which requires the engine to be removed from the vehicle and transferred to an engine stand. A major overhaul costs more than a top overhaul.

"New limits" are the factory service manual's approved fits and tolerances to which a new engine is manufactured. This may be accomplished by using "standard" or approved "undersized" and "oversized" tolerances. "Service limits" are the factory service manual's allowable wear fits and tolerances that a new-limits part may deteriorate to and still be a usable component. This may also be accomplished using "standard" and approved "undersized" and "oversized" tolerances. [4]

Remanufactured

Remanufactured engines are used engines that have been rebuilt to something approximating their manufacturers’ specifications. [5]

A combination of new and used parts are used, with st least the cylinder block being recycled, typically after having been degreased and steam-cleaned, its coolant passages and oil galleries and passages cleaned, and inspected for cracks and other flaws. High-quality rebuilds will include cylinder honing and typically adjust for standard wear by installing as necessary marginally larger bearings, rings, and other similar wear-prone components, new valve springs and guides, lapping valve seats, and otherwise bringing an engine reasonably close to manufacturer specifications. Better yet remanufacturing may see new pistons and the line-boring of worn crankshaft and camshaft bores to permit larger bushings to be installed.

Blueprinting

Blueprinting an engine means to build it to exact design specifications, limits and tolerances created by its OEM engineers.

In spite of that definition, the term is often colloquially used for pursuing better-than-factory tolerances and performance, possibly with custom specifications (as for racing).

Common goals include engine re-manufacturing to achieve the rated power for its manufacturer's design, and rebuilding an engine to optimize its performance by adhering to or exceeding exacting manufacturer specifications. Blueprinted components allow for a more exact balancing of reciprocating parts and rotating assemblies so less power is lost through excessive engine vibrations and other mechanical inefficiencies.

When feasible, as with a factory-sponsored race team, blueprinting is performed on components removed from the production line before normal balancing and finishing. Over-machined, under-cast, and deficiently manufactured parts are rejected, and only those either exactly meeting specifications or allowing removal of excess material are selected. Aftermarket and private parties must work with what they have or seek suitable replacements that can be brought to spec, following the same guidelines.

History

'Igniscope' ignition tester, with display tube and outer case missing Igniscope Ignition Tester 1.jpg
'Igniscope' ignition tester, with display tube and outer case missing

Modern engine tuning was spawned by the combination of racing advances, the hands-on post-war hot-rod movement, and then-advanced electronics and technologies developed during World War II.

Tools

The 'Igniscope' electronic ignition tester was produced by English Electric during the 1940s, originally as 'type UED' for military use during World War II. [6] The post-war version, the 'type ZWA' electronic ignition tester, was advertised as "the first of its kind, employing an entirely new technique". [7]

The Igniscope used a cathode ray tube, giving an entirely visual method of diagnosis. It was invented by D. Napier & Son, a subsidiary of English Electric. [8] The Igniscope was capable of diagnosing latent and actual faults in both coil and magneto ignition systems, including poor battery supply bonding, points and condenser problems, distributor failure and spark-plug gap. [9] One feature was a "loading" control that made latent faults more visible.

The UED manual includes the spark plug firing order of tanks and cars used by the British armed forces. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Carburetor</span> Component of internal combustion engines which mixes air and fuel in a controlled ratio

A carburetor is a device used by a gasoline internal combustion engine to control and mix air and fuel entering the engine. The primary method of adding fuel to the intake air is through the Venturi tube in the main metering circuit, though various other components are also used to provide extra fuel or air in specific circumstances.

<span class="mw-page-title-main">Two-stroke engine</span> Internal combustion engine type

A two-strokeengine is a type of internal combustion engine that completes a power cycle with two strokes of the piston in one revolution of the crankshaft. A four-stroke engine requires four strokes of the piston to complete a power cycle in two crankshaft revolutions. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust functions occurring at the same time.

<span class="mw-page-title-main">Exhaust gas recirculation</span> NOx reduction technique used in gasoline and diesel engines

In internal combustion engines, exhaust gas recirculation (EGR) is a nitrogen oxide (NOx) emissions reduction technique used in petrol/gasoline, diesel engines and some hydrogen engines. EGR works by recirculating a portion of an engine's exhaust gas back to the engine cylinders. The exhaust gas displaces atmospheric air and reduces O2 in the combustion chamber. Reducing the amount of oxygen reduces the amount of fuel that can burn in the cylinder thereby reducing peak in-cylinder temperatures. The actual amount of recirculated exhaust gas varies with the engine operating parameters.

<span class="mw-page-title-main">Four-stroke engine</span> Internal combustion engine type

A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing a partial vacuum in the cylinder through its downward motion.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust port.
<span class="mw-page-title-main">VTEC</span> Automobile variable valve timing technology

VTEC is a system developed by Honda to improve the volumetric efficiency of a four-stroke internal combustion engine, resulting in higher performance at high RPM, and lower fuel consumption at low RPM. The VTEC system uses two camshaft profiles and hydraulically selects between profiles. It was invented by Honda engineer Ikuo Kajitani. It is distinctly different from standard VVT systems which change only the valve timings and do not change the camshaft profile or valve lift in any way.

<span class="mw-page-title-main">Inlet manifold</span> Automotive technology

An inlet manifold or intake manifold is the part of an internal combustion engine that supplies the fuel/air mixture to the cylinders. The word manifold comes from the Old English word manigfeald and refers to the multiplying of one (pipe) into many.

Lean-burn refers to the burning of fuel with an excess of air in an internal combustion engine. In lean-burn engines the air–fuel ratio may be as lean as 65:1. The air / fuel ratio needed to stoichiometrically combust gasoline, by contrast, is 14.64:1. The excess of air in a lean-burn engine emits far less hydrocarbons. High air–fuel ratios can also be used to reduce losses caused by other engine power management systems such as throttling losses.

<span class="mw-page-title-main">Alfa Romeo Twin Spark engine</span> Reciprocating internal combustion engine

Alfa Romeo Twin Spark (TS) technology was used for the first time in the Alfa Romeo Grand Prix car in 1914. In the early 1960s it was used in their race cars (GTA, TZ) to enable it to achieve a higher power output from its engines. And in the early and middle 1980s, Alfa Romeo incorporated this technology into their road cars to enhance their performance and to comply with stricter emission controls.

Manifold vacuum, or engine vacuum in an internal combustion engine is the difference in air pressure between the engine's intake manifold and Earth's atmosphere.

<span class="mw-page-title-main">Back-fire</span> Explosion in the exhaust of an engine

A backfire or afterburn is combustion or an explosion produced by a running internal combustion engine that occurs in the exhaust system, rather than inside the combustion chamber. It is also sometimes referred to as an afterfire, especially in cases where the word backfire is used to mean a fuel burn that occurs while an intake valve is open, causing the fire to move backward through the system and out through the intake instead of the exhaust. When the flame moves backward it may also be called a "pop-back". A backfire can be caused either by ignition that happens with an exhaust valve open or unburnt fuel making its way into the hot exhaust system. A visible flame may momentarily shoot out of the exhaust pipe. A backfire is often a sign that the engine is improperly tuned.

The anti-lag system (ALS) is a method of reducing turbo lag or effective compression used on turbocharged engines to minimize turbo lag on racing or performance cars. It works by delaying the ignition timing and adding extra fuel to balance an inherent loss in combustion efficiency with increased pressure at the charging side of the turbo. This is achieved as an excess amount of fuel/air mixture escapes through the exhaust valves and combusts in the hot exhaust manifold spooling the turbocharger creating higher usable pressure.

<span class="mw-page-title-main">Toyota S engine</span> Reciprocating internal combustion engine

The Toyota S Series engines are a family of straight-four petrol engines with displacements between 1.8 and 2.2 litres, produced by Toyota Motor Corporation from January 1980 to August 2007. The S series has cast iron engine blocks and aluminium cylinder heads.

<span class="mw-page-title-main">Chip tuning</span> Reprogramming a car to improve performance

Chip tuning is changing or modifying an erasable programmable read only memory chip in an automobile's or other vehicles electronic control unit to achieve superior performance, whether it be more power, cleaner emissions, or better fuel efficiency. Engine manufacturers generally use a conservative electronic control unit map to allow for individual engine variations, as well as infrequent servicing and poor-quality fuel. Vehicles with a remapped electronic control unit may be more sensitive to fuel quality and service schedules.

A rev limiter is a device fitted in modern vehicles that have internal combustion engines. They are intended to protect an engine by restricting its maximum rotational speed, measured in revolutions per minute (RPM). Rev limiters are pre-set by the engine manufacturer. There are also aftermarket units where a separate controller is installed using a custom RPM setting. A limiter prevents a vehicle's engine from being pushed beyond the manufacturer's limit, known as the redline. At some point beyond the redline, engine damage may occur.

A throttle is a mechanism by which fluid flow is managed by constriction or obstruction.

<span class="mw-page-title-main">Ignition timing</span> Timing of the release of a spark in a combustion engine

In a spark ignition internal combustion engine, ignition timing is the timing, relative to the current piston position and crankshaft angle, of the release of a spark in the combustion chamber near the end of the compression stroke.

<span class="mw-page-title-main">Digifant engine management system</span> Engine component of the Volkswagen Group

Digifant is an Engine Management System operated by an Engine Control Unit that actuates outputs, such as fuel injection and ignition systems, using information derived from sensor inputs, such as engine speed, exhaust oxygen and intake air flow. Digifant was designed by Volkswagen Group, in cooperation with Robert Bosch GmbH.

Trionic T5.5 is an engine management system in the Saab Trionic range. It controls ignition, fuel injection and turbo boost pressure. The system was introduced in the 1993 Saab 9000 2.3 Turbo with B234L and B234R engine.

<span class="mw-page-title-main">Lucas 14CUX</span>

The Lucas 14CUX is an automotive electronic fuel injection system developed by Lucas Industries and fitted to the Rover V8 engine in Land Rover vehicles between 1990 and 1995. The system was also paired with the Rover V8 by a number of low-volume manufacturers such as TVR, Marcos, Ginetta, and Morgan.

References

  1. CarTechBooks. "Engine Management: Advanced Tuning". CarTechBooks. Retrieved 2023-09-18.
  2. CarTechBooks. "Designing and Tuning High-Performance Fuel Injection Systems". CarTechBooks. Retrieved 2023-09-18.
  3. "Does a Bigger Throttle Body Increase Horsepower?". 8 August 2019.
  4. 1 2 MR, MR. "Engine Overhaul Terminology and Standards". Mattituck Services, Inc. Retrieved 20 August 2011.
  5. "Remanufactured Gas Engine FAQs | Jasper Engines". www.jasperengines.com. Retrieved 2019-04-29.
  6. Instruction manuals published by The English Electric Company Ltd., Industrial Electronics Department, Stafford.
  7. Advertising brochure, page 2
  8. Edit by Mr. J. B. Roberts, May 1948, to note on page 7 of the brochure for the Model ZWA
  9. Early military and later commercial instruction manuals
  10. Manual for the "Igniscope" UED tester, Appendix 1