Condensed matter physics |
---|
A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact (the most common example would be friction when grains collide). [1] The constituents that compose granular material are large enough such that they are not subject to thermal motion fluctuations. Thus, the lower size limit for grains in granular material is about 1 μm. On the upper size limit, the physics of granular materials may be applied to ice floes where the individual grains are icebergs and to asteroid belts of the Solar System with individual grains being asteroids.
Some examples of granular materials are snow, nuts, coal, sand, rice, coffee, corn flakes, salt, and bearing balls. Research into granular materials is thus directly applicable and goes back at least to Charles-Augustin de Coulomb, whose law of friction was originally stated for granular materials. [2] Granular materials are commercially important in applications as diverse as pharmaceutical industry, agriculture, and energy production.
Powders are a special class of granular material due to their small particle size, which makes them more cohesive and more easily suspended in a gas.
The soldier/physicist Brigadier Ralph Alger Bagnold was an early pioneer of the physics of granular matter and whose book The Physics of Blown Sand and Desert Dunes [3] remains an important reference to this day. According to material scientist Patrick Richard, "Granular materials are ubiquitous in nature and are the second-most manipulated material in industry (the first one is water)". [4]
In some sense, granular materials do not constitute a single phase of matter but have characteristics reminiscent of solids, liquids, or gases depending on the average energy per grain. However, in each of these states, granular materials also exhibit properties that are unique. [5]
Granular materials also exhibit a wide range of pattern forming behaviors when excited (e.g. vibrated or allowed to flow). As such granular materials under excitation can be thought of as an example of a complex system. They also display fluid-based instabilities and phenomena such as Magnus effect. [6]
Granular matter is a system composed of many macroscopic particles. Microscopic particles (atoms\molecules) are described (in classical mechanics) by all DOF of the system. Macroscopic particles are described only by DOF of the motion of each particle as a rigid body. In each particle are a lot of internal DOF. Consider inelastic collision between two particles - the energy from velocity as rigid body is transferred to microscopic internal DOF. We get “Dissipation” - irreversible heat generation. The result is that without external driving, eventually all particles will stop moving. In macroscopic particles thermal fluctuations are irrelevant.
When a matter is dilute and dynamic (driven) then it is called granular gas and dissipation phenomenon dominates.
When a matter is dense and static, then it is called granular solid and jamming phenomenon dominates.
When the density is intermediate, then it is called granular liquid.
Coulomb regarded internal forces between granular particles as a friction process, and proposed the friction law, that the force of friction of solid particles is proportional to the normal pressure between them and the static friction coefficient is greater than the kinetic friction coefficient. He studied the collapse of piles of sand and found empirically two critical angles: the maximal stable angle and the minimum angle of repose . When the sandpile slope reaches the maximum stable angle, the sand particles on the surface of the pile begin to fall. The process stops when the surface inclination angle is equal to the angle of repose. The difference between these two angles, , is the Bagnold angle, which is a measure of the hysteresis of granular materials. This phenomenon is due to the force chains: stress in a granular solid is not distributed uniformly but is conducted away along so-called force chains which are networks of grains resting on one another. Between these chains are regions of low stress whose grains are shielded for the effects of the grains above by vaulting and arching. When the shear stress reaches a certain value, the force chains can break and the particles at the end of the chains on the surface begin to slide. Then, new force chains form until the shear stress is less than the critical value, and so the sandpile maintains a constant angle of repose. [7]
In 1895, H. A. Janssen discovered that in a vertical cylinder filled with particles, the pressure measured at the base of the cylinder does not depend on the height of the filling, unlike Newtonian fluids at rest which follow Stevin's law. Janssen suggested a simplified model with the following assumptions:
1) The vertical pressure, , is constant in the horizontal plane;
2) The horizontal pressure, , is proportional to the vertical pressure , where is constant in space;
3) The wall friction static coefficient sustains the vertical load at the contact with the wall;
4) The density of the material is constant over all depths.
The pressure in the granular material is then described in a different law, which accounts for saturation:
,
where and is the radius of the cylinder, and at the top of the silo .
The given pressure equation does not account for boundary conditions, such as the ratio between the particle size to the radius of the silo. Since the internal stress of the material cannot be measured, Janssen's speculations have not been verified by any direct experiment.
In the early 1960s, Rowe studied dilatancy effect on shear strength in shear tests and proposed a relation between them.
The mechanical properties of assembly of mono-dispersed particles in 2D can be analyzed based on the representative elementary volume, with typical lengths, , in vertical and horizontal directions respectively. The geometric characteristics of the system is described by and the variable , which describes the angle when the contact points begin the process of sliding. Denote by the vertical direction, which is the direction of the major principal stress, and by the horizontal direction, which is the direction of the minor principal stress.
Then stress on the boundary can be expressed as the concentrated force borne by individual particles. Under biaxial loading with uniform stress and therefore .
At equilibrium state:
,
where , the friction angle, is the angle between the contact force and the contact normal direction.
, which describes the angle that if the tangential force falls within the friction cone the particles would still remain steady. It is determined by the coefficient of friction , so . Once stress is applied to the system then gradually increases while remains unchanged. When then the particles will begin sliding, resulting in changing the structure of the system and creating new force chains. , the horizontal and vertical displacements respectively satisfies
.
If the granular material is driven harder such that contacts between the grains become highly infrequent, the material enters a gaseous state. Correspondingly, one can define a granular temperature equal to the root mean square of grain velocity fluctuations that is analogous to thermodynamic temperature. Unlike conventional gases, granular materials will tend to cluster and clump due to the dissipative nature of the collisions between grains. This clustering has some interesting consequences. For example, if a partially partitioned box of granular materials is vigorously shaken then grains will over time tend to collect in one of the partitions rather than spread evenly into both partitions as would happen in a conventional gas. This effect, known as the granular Maxwell's demon, does not violate any thermodynamics principles since energy is constantly being lost from the system in the process.
Consider particles, particle having energy . At some constant rate per unit time, randomly choose two particles with energies and compute the sum . Now, randomly distribute the total energy between the two particles: choose randomly so that the first particle, after the collision, has energy , and the second .
The stochastic evolution equation:
,
where is the collision rate, is randomly picked from (uniform distribution) and j is an index also randomly chosen from a uniform distribution. The average energy per particle: .
The second moment:
.
Now the time derivative of the second moment:
.
In steady state:
.
Solving the differential equation for the second moment:
.
However, instead of characterizing the moments, we can analytically solve the energy distribution, from the moment generating function. Consider the Laplace transform: ,
where , and .
the n derivative:
,
now:
.
Solving for with change of variables :
.
We will show that (Boltzmann Distribution) by taking its Laplace transform and calculate the generating function:
.
Granular systems are known to exhibit jamming and undergo a jamming transition which is thought of as a thermodynamic phase transition to a jammed state. [8] The transition is from fluid-like phase to a solid-like phase and it is controlled by temperature, , volume fraction, , and shear stress, . The normal phase diagram of glass transition is in the plane and it is divided into a jammed state region and unjammed liquid state by a transition line. The phase diagram for granular matter lies in the plane, and the critical stress curve divides the state phase to jammed\unjammed region, which corresponds to granular solids\liquids respectively. For isotropically jammed granular system, when is reduced around a certain point, , the bulk and shear moduli approach 0. The point corresponds to the critical volume fraction . Define the distance to point , the critical volume fraction, . The behavior of granular systems near the point was empirically found to resemble second-order transition: the bulk modulus shows a power law scaling with and there are some divergent characteristics lengths when approaches zero. [7] While is constant for an infinite system, for a finite system boundary effects result in a distribution of over some range.
The Lubachevsky-Stillinger algorithm of jamming allows one to produce simulated jammed granular configurations. [9]
Excited granular matter is a rich pattern-forming system. Some of the pattern-forming behaviours seen in granular materials are:
Some of the pattern-forming behaviours have been possible to reproduce in computer simulations. [12] [13] There are two main computational approaches to such simulations, time-stepped and event-driven, the former being the most efficient for a higher density of the material and the motions of a lower intensity, and the latter for a lower density of the material and the motions of a higher intensity.
Some beach sands, such as those of the aptly named Squeaky Beach, exhibit squeaking when walked upon. Some desert dunes are known to exhibit booming during avalanching or when their surface is otherwise disturbed. Granular materials discharged from silos produce loud acoustic emissions in a process known as silo honking.
Granulation is the act or process in which primary powder particles are made to adhere to form larger, multiparticle entities called granules.
When water or other liquids are cooled sufficiently slowly, randomly positioned molecules rearrange and solid crystals emerge and grow. A similar crystallisation process may occur in randomly packed granular materials. Unlike removing energy by cooling, crystallization in granular material is achieved by external driving. Ordering, or crystallization of granular materials has been observed to occur in periodically sheared as well as vibrated granular matter. [11] In contrast to molecular systems, the positions of the individual particles can be tracked in the experiment. [14] Computer simulations for a system of spherical grains reveal that homogeneous crystallization emerges at a volume fraction . [15] The computer simulations identify the minimal ingredients necessary for granular crystallization. In particular, gravity and friction are not necessary.
Several methods are available for modeling of granular materials. Most of these methods consist of the statistical methods by which various statistical properties, derived from either point data or an image, are extracted and used to generate stochastic models of the granular medium. A recent and comprehensive review of such methods is available in Tahmasebi and other (2017). [16] Another alternative for building a pack of granular particles that recently has been presented is based on the level-set algorithm by which the real shape of the particle can be captured and reproduced through the extracted statistics for particles' morphology. [17]
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.
Stellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.
In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.
In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.
In particle physics, neutral particle oscillation is the transmutation of a particle with zero electric charge into another neutral particle due to a change of a non-zero internal quantum number, via an interaction that does not conserve that quantum number. Neutral particle oscillations were first investigated in 1954 by Murray Gell-mann and Abraham Pais.
In accelerator physics, emittance is a property of a charged particle beam. It refers to the area occupied by the beam in a position-and-momentum phase space.
In theoretical physics, a source is an abstract concept, developed by Julian Schwinger, motivated by the physical effects of surrounding particles involved in creating or destroying another particle. So, one can perceive sources as the origin of the physical properties carried by the created or destroyed particle, and thus one can use this concept to study all quantum processes including the spacetime localized properties and the energy forms, i.e., mass and momentum, of the phenomena. The probability amplitude of the created or the decaying particle is defined by the effect of the source on a localized spacetime region such that the affected particle captures its physics depending on the tensorial and spinorial nature of the source. An example that Julian Schwinger referred to is the creation of meson due to the mass correlations among five mesons..
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.
The time-evolving block decimation (TEBD) algorithm is a numerical scheme used to simulate one-dimensional quantum many-body systems, characterized by at most nearest-neighbour interactions. It is dubbed Time-evolving Block Decimation because it dynamically identifies the relevant low-dimensional Hilbert subspaces of an exponentially larger original Hilbert space. The algorithm, based on the Matrix Product States formalism, is highly efficient when the amount of entanglement in the system is limited, a requirement fulfilled by a large class of quantum many-body systems in one dimension.
The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.
Intrabeam scattering (IBS) is an effect in accelerator physics where collisions between particles couple the beam emittance in all three dimensions. This generally causes the beam size to grow. In proton accelerators, intrabeam scattering causes the beam to grow slowly over a period of several hours. This limits the luminosity lifetime. In circular lepton accelerators, intrabeam scattering is counteracted by radiation damping, resulting in a new equilibrium beam emittance with a relaxation time on the order of milliseconds. Intrabeam scattering creates an inverse relationship between the smallness of the beam and the number of particles it contains, therefore limiting luminosity.
In 3-dimensional topology, a part of the mathematical field of geometric topology, the Casson invariant is an integer-valued invariant of oriented integral homology 3-spheres, introduced by Andrew Casson.
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.
In mathematics, the Möbius energy of a knot is a particular knot energy, i.e., a functional on the space of knots. It was discovered by Jun O'Hara, who demonstrated that the energy blows up as the knot's strands get close to one another. This is a useful property because it prevents self-intersection and ensures the result under gradient descent is of the same knot type.
In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to
In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.
Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.
In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.