IBM Quantum Platform

Last updated
IBM Quantum Platform
IBM Quantum Platform logo.svg
Type of site
Cloud-based quantum computing
Owner IBM
URL quantum.cloud.ibm.com
RegistrationRequired
LaunchedMay 2016;9 years ago (2016-05)
Current statusActive

IBM Quantum Platform (previously known as IBM Quantum Experience) is an online platform allowing public and premium access to cloud-based quantum computing services provided by IBM. This includes access to a set of IBM's quantum processors, a set of tutorials on quantum computation, and access to interactive courses. As of June 2025, there are 12 devices on the service, all of which are freely accessible by the public. [1] This service can be used to run algorithms and experiments, and explore tutorials and simulations around what might be possible with quantum computing.

Contents

IBM's quantum processors are made up of superconducting transmon qubits, located in dilution refrigerators at the IBM Research headquarters at the Thomas J. Watson Research Center. Users interact with a quantum processor through the quantum circuit model of computation, typically through code written in Qiskit. This code can be compiled down to OpenQASM for execution on real quantum systems.

Circuits can be created either graphically with the Quantum Composer, or programmatically through Jupyter notebooks on IBM's approved platforms for cloud-based quantum computing: qBraid and OVHCloud. [2]

History

IBM Quantum Composer

Screenshot showing the result of running a GHZ state experiment using the IBM Quantum Composer GHZstate IBMQExperience results.png
Screenshot showing the result of running a GHZ state experiment using the IBM Quantum Composer

The Quantum Composer is a graphic user interface (GUI) designed by IBM to allow users to construct various quantum algorithms or run other quantum experiments. Users may see the results of their quantum algorithms by either running it on a real quantum processor or by using a simulator. Algorithms developed in the Quantum Composer are referred to as a "quantum score", in reference to the Quantum Composer resembling a musical sheet. [11]

The composer can also be used in scripting mode, where the user can write programs in the OpenQASM-language instead. Below is an example of a very small program, built for IBMs 5-qubit computer. The program instructs the computer to generate a quantum state , a 3-qubit GHZ state, which can be thought of as a variant of the Bell state, but with three qubits instead of two. It then measures the state, forcing it to collapse to one of the two possible outcomes, or .

include"qelib1.inc"qregq[5];// allocate 5 qubits (set automatically to |00000>)cregc[5];// allocate 5 classical bitshq[0];// Hadamard-transform qubit 0cxq[0],q[1];// conditional pauli X-transform (ie. "CNOT") of qubits 0 and 1// At this point we have a 2-qubit Bell state (|00> + |11>)/sqrt(2)cxq[1],q[2];// this expands entanglement to the 3rd qubitmeasureq[0]->c[0];// this measurement collapses the entire 3-qubit statemeasureq[1]->c[1];// therefore qubit 1 and 2 read the same value as qubit 0measureq[2]->c[2];

Every instruction in the QASM language is the application of a quantum gate, initialization of the chips registers to zero or measurement of these registers.

Usage

References

  1. "IBM Quantum Devices". 2024-05-15.
  2. "Transitioning from IBM Quantum Lab". 2024-05-15.
  3. "IBM Makes Quantum Computing Available on IBM Cloud to Accelerate Innovation". 2016-05-04. Archived from the original on May 4, 2016.
  4. "IBM Quantum Experience Update". Archived from the original on 2019-01-29. Retrieved 2017-04-06.
  5. "Quantum computing gets an API and SDK". 2017-03-06.
  6. "Beta access our upgrade to the IBM QX". Archived from the original on 2019-01-31. Retrieved 2017-05-19.
  7. "Now Open: Get quantum ready with new scientific prizes for professors, students and developers". IBM . 2018-01-14.
  8. "IBM Unveils Beta of Next Generation Quantum Development Platform". IBM . 2021-02-10.
  9. "Announcement of IBM Quantum Composer and Lab". 2021-03-02.
  10. "Transitioning from IBM Quantum Lab". 2024-05-15.
  11. "IBM Quantum experience". Quantum Experience. IBM. Archived from the original on 25 May 2018. Retrieved 3 July 2017.
  12. "Research at IBM Quantum". IBM . 2025-06-02.
  13. "QX Community papers". Archived from the original on 2019-03-22. Retrieved 2018-05-24.
  14. "Research of the IBM Quantum Hub at the University of Melbourne". 20 April 2021.
  15. Rundle, R. P.; Tilma, T.; Samson, J. H.; Everitt, M. J. (2017). "Quantum state reconstruction made easy: a direct method for tomography". Physical Review A. 96 (2): 022117. arXiv: 1605.08922 . Bibcode:2017PhRvA..96b2117R. doi:10.1103/PhysRevA.96.022117.
  16. Corbett Moran, Christine (29 June 2016). "Quintuple: a Python 5-qubit quantum computer simulator to facilitate cloud quantum computing". arXiv: 1606.09225 [quant-ph].
  17. Huffman, Emilie; Mizel, Ari (29 March 2017). "Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett-Garg test that addresses the clumsiness loophole". Physical Review A. 95 (3): 032131. arXiv: 1609.05957 . Bibcode:2017PhRvA..95c2131H. doi:10.1103/PhysRevA.95.032131.
  18. Deffner, Sebastian (23 September 2016). "Demonstration of entanglement assisted invariance on IBM's Quantum Experience". Heliyon. 3 (11): e00444. arXiv: 1609.07459 . doi: 10.1016/j.heliyon.2017.e00444 . PMC   5683883 . PMID   29159322.
  19. Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su (9 December 2016). "Homomorphic Encryption Experiments on IBM's Cloud Quantum Computing Platform". Frontiers of Physics. 12 (1): 120305. arXiv: 1612.02886 . Bibcode:2017FrPhy..12l0305H. doi:10.1007/s11467-016-0643-9. S2CID   17770053.
  20. Wootton, James R (1 March 2017). "Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment". Quantum Science and Technology. 2 (1): 015006. arXiv: 1609.07774 . Bibcode:2017QS&T....2a5006W. doi:10.1088/2058-9565/aa5c73. S2CID   44370109.
  21. Fedortchenko, Serguei (8 July 2016). "A quantum teleportation experiment for undergraduate students". arXiv: 1607.02398 [quant-ph].
  22. Berta, Mario; Wehner, Stephanie; Wilde, Mark M (6 July 2016). "Entropic uncertainty and measurement reversibility". New Journal of Physics. 18 (7): 073004. arXiv: 1511.00267 . Bibcode:2016NJPh...18g3004B. doi:10.1088/1367-2630/18/7/073004. S2CID   119186679.
  23. Li, Rui; Alvarez-Rodriguez, Unai; Lamata, Lucas; Solano, Enrique (23 November 2016). "Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience". Quantum Measurements and Quantum Metrology. 4 (1): 1–7. arXiv: 1611.07851 . Bibcode:2017QMQM....4....1L. doi:10.1515/qmetro-2017-0001. S2CID   108291239.
  24. Hebenstreit, M.; Alsina, D.; Latorre, J. I.; Kraus, B. (11 January 2017). "Compressed quantum computation using the IBM Quantum Experience". Phys. Rev. A. 95 (5): 052339. arXiv: 1701.02970 . doi:10.1103/PhysRevA.95.052339. S2CID   118958024.
  25. Alsina, Daniel; Latorre, José Ignacio (11 July 2016). "Experimental test of Mermin inequalities on a five-qubit quantum computer". Physical Review A. 94 (1): 012314. arXiv: 1605.04220 . Bibcode:2016PhRvA..94a2314A. doi:10.1103/PhysRevA.94.012314. S2CID   119189277.
  26. Linke, Norbert M.; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A.; Wright, Kenneth; Monroe, Christopher (28 March 2017). "Experimental comparison of two quantum computing architectures". Proceedings of the National Academy of Sciences. 114 (13): 3305–3310. arXiv: 1702.01852 . Bibcode:2017PNAS..114.3305L. doi: 10.1073/pnas.1618020114 . PMC   5380037 . PMID   28325879.
  27. Devitt, Simon J. (29 September 2016). "Performing quantum computing experiments in the cloud". Physical Review A. 94 (3): 032329. arXiv: 1605.05709 . Bibcode:2016PhRvA..94c2329D. doi:10.1103/PhysRevA.94.032329. S2CID   119217150.
  28. Steiger, Damian; Haner, Thomas; Troyer, Matthias (2018). "ProjectQ: An Open Source Software Framework for Quantum Computing". Quantum. 2: 49. arXiv: 1612.08091 . Bibcode:2018Quant...2...49S. doi:10.22331/q-2018-01-31-49. S2CID   6758479.
  29. Santos, Alan C. (2017). "O Computador Quântico da IBM e o IBM Quantum Experience". Revista Brasileira de Ensino de Física. 39 (1). arXiv: 1610.06980 . doi:10.1590/1806-9126-RBEF-2016-0155.
  30. Caicedo-Ortiz, H. E.; Santiago-Cortés, E. (2017). "Construyendo compuertas cuánticas con IBM's cloud quantum computer" [Building quantum gates with IBM’s cloud quantum computer](PDF). Journal de Ciencia e Ingeniería (in Spanish). 9: 42–56. doi: 10.46571/JCI.2017.1.7 .