Mechanical equivalent of heat

Last updated

In the history of science, the mechanical equivalent of heat states that motion and heat are mutually interchangeable and that in every case, a given amount of work would generate the same amount of heat, provided the work done is totally converted to heat energy. The mechanical equivalent of heat was a concept that had an important part in the development and acceptance of the conservation of energy and the establishment of the science of thermodynamics in the 19th century. Its independent and simultaneous discovery by James Prescott Joule and by Julius Robert von Mayer led to a priority dispute.

Contents

History and priority dispute

Joule's apparatus for measuring the mechanical equivalent of heat in which the "work" of the falling weight is converted into the "heat" of agitation in the water. Joule's Apparatus (Harper's Scan).png
Joule's apparatus for measuring the mechanical equivalent of heat in which the "work" of the falling weight is converted into the "heat" of agitation in the water.

Benjamin Thompson, Count Rumford, had observed the frictional heat generated by boring cannon at the arsenal in Munich, Bavaria, circa 1797 Rumford immersed a cannon barrel in water and arranged for a specially blunted boring tool. He showed that the water could be boiled within roughly two and a half hours and that the supply of frictional heat was seemingly inexhaustible.

Based on his experiments, he published "An Experimental Enquiry Concerning the Source of the Heat which is Excited by Friction", (1798), Philosophical Transactions of the Royal Society p. 102. This scientific paper provided a substantial challenge to established theories of heat and began the 19th century revolution in thermodynamics. The experiment inspired the work of James Prescott Joule in the 1840s. Joule's more exact measurements on equivalence were pivotal in establishing the kinetic theory at the expense of the caloric theory. The idea that heat and work are equivalent was also proposed by Julius Robert von Mayer in 1842 in the leading German physics journal and independently by James Prescott Joule in 1843, in the leading British physics journal. Similar work was carried out by Ludwig A. Colding in 1840–1843, though Colding's work was little known outside his native Denmark.

A collaboration between Nicolas Clément and Sadi Carnot in the 1820s had some related thinking near the same lines. [1] In 1845, Joule published a paper entitled "The Mechanical Equivalent of Heat", in which he specified a numerical value for the amount of mechanical work required to produce a unit of heat. In particular Joule had experimented on the amount of mechanical work generated by friction needed to raise the temperature of a pound of water by one degree Fahrenheit and found a consistent value of 778.24 foot pound force (4.1550  J·cal −1). Joule contended that motion and heat were mutually interchangeable and that, in every case, a given amount of work would generate the same amount of heat. Von Mayer also published a numerical value for mechanical equivalent of heat in 1845 but his experimental method wasn't as convincing.

Though a standardised value of 4.1860 J·cal−1 was established in the early 20th century, in the 1920s, it was ultimately realised that the constant is simply the specific heat of water, a quantity that varies with temperature between the values of 4.17 and 4.22 g −1·°C −1. The change in unit was the result of the demise of the calorie as a unit in physics and chemistry.

Both von Mayer and Joule met with initial neglect and resistance despite having published in leading European physics journals, but by 1847, a lot of leading scientists of the day were paying attention. Hermann Helmholtz in 1847 published what is considered a definitive declaration of the conservation of energy. Helmholtz had learned from reading Joule's publications, though Helmholtz eventually came around to crediting both Joule and von Mayer for priority.

Also in 1847, Joule made a well-attended presentation at the annual meeting of British Association for the Advancement of Science. Among those in attendance was William Thomson. Thomson was intrigued but initially skeptical. Over the next two years, Thomson became increasingly convinced of Joule's theory, finally admitting his conviction in print in 1851, simultaneously crediting von Mayer. Thomson collaborated with Joule, mainly by correspondence, Joule conducting experiments, Thomson analysing the results and suggesting further experiments. The collaboration lasted from 1852 to 1856. Its published results did much to bring about general acceptance of Joule's work and the kinetic theory.

However, in 1848, von Mayer had first had sight of Joule's papers and wrote to the French Académie des Sciences to assert priority. His letter was published in the Comptes Rendus and Joule was quick to react. Thomson's close relationship with Joule allowed him to become dragged into the controversy. The pair planned that Joule would admit von Mayer's priority for the idea of the mechanical equivalent but to claim that experimental verification rested with Joule. Thomson's associates, co-workers and relatives such as William John Macquorn Rankine, James Thomson, James Clerk Maxwell, and Peter Guthrie Tait joined to champion Joule's cause.

However, in 1862, John Tyndall, in one of his many excursions into popular science and many public disputes with Thomson and his circle, gave a lecture at the Royal Institution entitled On Force in which he credited von Mayer with conceiving and measuring the mechanical equivalent of heat. Thomson and Tait were angered, and an undignified public exchange of correspondence took place in the pages of the Philosophical Magazine , and the rather more popular Good Words. Tait even resorted to championing Colding's cause in an attempt to undermine von Mayer.

Though Tyndall again pressed von Mayer's cause in Heat: A Mode of Motion (1863) with the publication of Sir Henry Enfield Roscoe's Edinburgh Review article Thermo-Dynamics in January 1864, Joule's reputation was sealed while that of von Mayer entered a period of obscurity.

Notes

  1. ^ The usage of terms such as work, force, energy, power, etc. in the 18th and 19th centuries by scientific workers does not necessarily reflect the standardised modern usage.

Related Research Articles

<span class="mw-page-title-main">Energy</span> Physical quantity

In physics, energy is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light. Energy is a conserved quantity—the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The unit of measurement for energy in the International System of Units (SI) is the joule (J).

<span class="mw-page-title-main">Thermodynamics</span> Physics of heat, work, and temperature

Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology.

<span class="mw-page-title-main">Lord Kelvin</span> British physicist, engineer and mathematician (1824–1907)

William Thomson, 1st Baron Kelvin, was a British mathematician, mathematical physicist and engineer born in Belfast. He was the professor of Natural Philosophy at the University of Glasgow for 53 years, where he undertook significant research and mathematical analysis of electricity, the formulation of the first and second laws of thermodynamics, and contributed significantly to unifying physics, which was then in its infancy of development as an emerging academic discipline. He received the Royal Society's Copley Medal in 1883 and served as its president from 1890 to 1895. In 1892, he became the first British scientist to be elevated to the House of Lords.

<span class="mw-page-title-main">Timeline of thermodynamics</span>

A timeline of events in the history of thermodynamics.

The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. In the case of a closed system the principle says that the total amount of energy within the system can only be changed through energy entering or leaving the system. Energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another. For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes. If one adds up all forms of energy that were released in the explosion, such as the kinetic energy and potential energy of the pieces, as well as heat and sound, one will get the exact decrease of chemical energy in the combustion of the dynamite.

<span class="mw-page-title-main">James Prescott Joule</span> English physicist and brewer (1819–1889)

James Prescott Joule was an English physicist, mathematician and brewer, born in Salford, Lancashire. Joule studied the nature of heat, and discovered its relationship to mechanical work. This led to the law of conservation of energy, which in turn led to the development of the first law of thermodynamics. The SI derived unit of energy, the joule, is named after him.

<span class="mw-page-title-main">First law of thermodynamics</span> Law of thermodynamics establishing the conservation of energy

The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes. The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter. The law also defines the internal energy of a system, an extensive property for taking account of the balance of heat and work in the system. Energy cannot be created or destroyed, but it can be transformed from one form to another. In an isolated system the sum of all forms of energy is constant.

The caloric theory is an obsolete scientific theory that heat consists of a self-repellent fluid called caloric that flows from hotter bodies to colder bodies. Caloric was also thought of as a weightless gas that could pass in and out of pores in solids and liquids. The "caloric theory" was superseded by the mid-19th century in favor of the mechanical theory of heat, but nevertheless persisted in some scientific literature—particularly in more popular treatments—until the end of the 19th century.

The heat death of the universe is a hypothesis on the ultimate fate of the universe, which suggests the universe will evolve to a state of no thermodynamic free energy, and will therefore be unable to sustain processes that increase entropy. Heat death does not imply any particular absolute temperature; it only requires that temperature differences or other processes may no longer be exploited to perform work. In the language of physics, this is when the universe reaches thermodynamic equilibrium.

<span class="mw-page-title-main">Thermal energy</span> Energy that is measured by temperature

The term "thermal energy" is used loosely in various contexts in physics and engineering, generally related to the kinetic energy of vibrating and colliding atoms in a substance. It can refer to several different physical concepts. These include the internal energy or enthalpy of a body of matter and radiation; heat, defined as a type of energy transfer ; and the characteristic energy of a degree of freedom, , in a system that is described in terms of its microscopic particulate constituents.

<span class="mw-page-title-main">Julius von Mayer</span> German physician, chemist, and physicist

Julius Robert von Mayer was a German physician, chemist, and physicist and one of the founders of thermodynamics. He is best known for enunciating in 1841 one of the original statements of the conservation of energy or what is now known as one of the first versions of the first law of thermodynamics, namely that "energy can be neither created nor destroyed". In 1842, Mayer described the vital chemical process now referred to as oxidation as the primary source of energy for any living creature. He also proposed that plants convert light into chemical energy.

<span class="mw-page-title-main">An Experimental Enquiry Concerning the Source of the Heat which is Excited by Friction</span>

"An Experimental Enquiry Concerning the Source of the Heat which is Excited by Friction" is a scientific paper by Benjamin Thompson, Count Rumford, which was published in the Philosophical Transactions of the Royal Society in 1798. The paper provided a substantial challenge to established theories of heat, and began the 19th century revolution in thermodynamics.

<span class="mw-page-title-main">History of thermodynamics</span>

The history of thermodynamics is a fundamental strand in the history of physics, the history of chemistry, and the history of science in general. Owing in the relevance of thermodynamics in much of science and technology, its history is finely woven with the developments of classical mechanics, quantum mechanics, magnetism, and chemical kinetics, to more distant applied fields such as meteorology, information theory, and biology (physiology), and to technological developments such as the steam engine, internal combustion engine, cryogenics and electricity generation. The development of thermodynamics both drove and was driven by atomic theory. It also, albeit in a subtle manner, motivated new directions in probability and statistics; see, for example, the timeline of thermodynamics.

<span class="mw-page-title-main">Ludwig A. Colding</span> Danish engineer and physicist (1815–1888)

Ludwig August Colding was a Danish civil engineer and physicist who articulated the principle of conservation of energy contemporaneously with, and independently of, James Prescott Joule and Julius Robert von Mayer though his contribution was largely overlooked and neglected.

<span class="mw-page-title-main">Work (thermodynamics)</span> Type of energy transfer

Thermodynamic work is one of the principal processes by which a thermodynamic system can interact with its surroundings and exchange energy. This exchange results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, or cause changes in electromagnetic, or gravitational variables. The surroundings also can perform work on a thermodynamic system, which is measured by an opposite sign convention.

<span class="mw-page-title-main">Gustave-Adolphe Hirn</span> French physicist, astronomer, mathematician, and engineer

Gustave-Adolphe Hirn was a French physicist, astronomer, mathematician, and engineer who made important measurements of the mechanical equivalent of heat and contributions to the early development of thermodynamics. He further applied his science in the practical development of steam engines.

<span class="mw-page-title-main">History of energy</span>

The word energy derives from Greek ἐνέργεια, which appears for the first time in the 4th century BCE works of Aristotle.

<i>Reflections on the Motive Power of Fire</i> Unique book of the French physicist Sadi Carnot

Reflections on the Motive Power of Fire and on Machines Fitted to Develop that Power is a scientific treatise written by the French military engineer Sadi Carnot. Published in 1824 in French as Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance, the short book sought to advance a rational theory of heat engines. At the time, heat engines had acquired great technological and economic importance, but very little was understood about them from the point of view of physics.

<span class="mw-page-title-main">Heat</span> Type of energy transfer

In thermodynamics, heat is the thermal energy transferred between systems due to a temperature difference. In colloquial use, heat sometimes refers to thermal energy itself. Thermal energy is the kinetic energy of vibrating and colliding atoms in a substance.

The 19th century in science saw the birth of science as a profession; the term scientist was coined in 1833 by William Whewell, which soon replaced the older term of (natural) philosopher.

References

  1. Lervig, P. Sadi Carnot and the steam engine:Nicolas Clément's lectures on industrial chemistry, 1823-28. Br. J Hist. Sci. 18::147, 1985.

Further reading