Thermal diode

Last updated

The term "thermal diode" can refer to:

One-way heat-flow

A thermal diode in this sense is a device whose thermal resistance is different for heat flow in one direction than for heat flow in the other direction. I.e., when the thermal diode's first terminal is hotter than the second, heat will flow easily from the first to the second, but when the second terminal is hotter than the first, little heat will flow from the second to the first.

Contents

Such an effect was first observed in a coppercuprous-oxide interface by Chauncey Starr in the 1930s. Beginning in 2002, theoretical models were proposed to explain this effect. In 2006 the first microscopic solid-state thermal diodes were built. [1] In April 2015 Italian researchers at CNR announced development of a working thermal diode, [2] publishing results in Nature Nanotechnology. [3]

Thermal siphons can act as a one-way heat flow. Heat pipes operating in gravity may also have this effect.

Electrical diode thermal effect or function

A sensor device embedded on microprocessors used to monitor the temperature of the processor's die is also known as a "thermal diode".

This application of thermal diode is based on the property of electrical diodes to change voltage across it linearly according to temperature. As the temperature increases, diodes' forward voltage decreases. Microprocessors having high clock rate encounter high thermal loads. To monitor the temperature limits thermal diodes are used. They are usually placed in that part of the processor core where highest temperature is encountered. Voltage developed across it varies with the temperature of the diode. All modern AMD and Intel CPUs, as well as AMD and Nvidia GPUs have on-chip thermal diodes. As the sensor is located directly on the processor die, it provides most local and relevant CPU and GPU temperature readings. The silicon diodes have temperature dependency of -2mV per degree Celsius. Thus the junction temperature can be determined by passing a set current through the diode and then measuring voltage developed across it. In addition to processors, the same technology is widely used in dedicated temperature sensor IC's.

Thermoelectric heat-pump or cooler

There are two types. One uses semiconductor, or less efficient metal, i.e. thermocouples, working on the principles of the Peltier-Seebeck effect. The other relies on vacuum tubes and the principles of thermionic emission.

Peltier devices

Advancements

As of 2009 a team at MIT is working for construction of thermal diodes that convert heat to electricity at lower temperatures than before. [4] This can be used in construction of engines or in electricity production. The efficiency of present thermal diodes is about 18% between the temperature range of 200-300 degree Celsius. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Diode</span> Two-terminal electronic component

A diode is a two-terminal electronic component that conducts current primarily in one direction. It has low resistance in one direction, and high resistance in the other.

A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. Its conducting properties may be altered in useful ways by introducing impurities ("doping") into the crystal structure. When two differently doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers, which include electrons, ions, and electron holes, at these junctions is the basis of diodes, transistors, and most modern electronics. Some examples of semiconductors are silicon, germanium, gallium arsenide, and elements near the so-called "metalloid staircase" on the periodic table. After silicon, gallium arsenide is the second-most common semiconductor and is used in laser diodes, solar cells, microwave-frequency integrated circuits, and others. Silicon is a critical element for fabricating most electronic circuits.

<span class="mw-page-title-main">Semiconductor device</span> Electronic component that exploits the electronic properties of semiconductor materials

A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material for its function. Its conductivity lies between conductors and insulators. Semiconductor devices have replaced vacuum tubes in most applications. They conduct electric current in the solid state, rather than as free electrons across a vacuum or as free electrons and ions through an ionized gas.

<span class="mw-page-title-main">Overclocking</span> Practice of increasing the clock rate of a computer to exceed that certified by the manufacturer

In computing, overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer. Commonly, operating voltage is also increased to maintain a component's operational stability at accelerated speeds. Semiconductor devices operated at higher frequencies and voltages increase power consumption and heat. An overclocked device may be unreliable or fail completely if the additional heat load is not removed or power delivery components cannot meet increased power demands. Many device warranties state that overclocking or over-specification voids any warranty, but some manufacturers allow overclocking as long as it is done (relatively) safely.

Underclocking, also known as downclocking, is modifying a computer or electronic circuit's timing settings to run at a lower clock rate than is specified. Underclocking is used to reduce a computer's power consumption, increase battery life, reduce heat emission, and it may also increase the system's stability, lifespan/reliability and compatibility. Underclocking may be implemented by the factory, but many computers and components may be underclocked by the end user.

<span class="mw-page-title-main">Thermoelectric cooling</span> Electrically powered heat-transfer

Thermoelectric cooling uses the Peltier effect to create a heat flux at the junction of two different types of materials. A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current. Such an instrument is also called a Peltier device, Peltier heat pump, solid state refrigerator, or thermoelectric cooler (TEC) and occasionally a thermoelectric battery. It can be used either for heating or for cooling, although in practice the main application is cooling. It can also be used as a temperature controller that either heats or cools.

<span class="mw-page-title-main">Thermoelectric effect</span> Direct conversion of temperature differences to electric voltage and vice versa

The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, heat is transferred from one side to the other, creating a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold side.

<span class="mw-page-title-main">Thermopile</span> Device that converts thermal energy into electrical energy

A thermopile is an electronic device that converts thermal energy into electrical energy. It is composed of several thermocouples connected usually in series or, less commonly, in parallel. Such a device works on the principle of the thermoelectric effect, i.e., generating a voltage when its dissimilar metals (thermocouples) are exposed to a temperature difference.

<span class="mw-page-title-main">Computer cooling</span> The process of removing waste heat from a computer

Computer cooling is required to remove the waste heat produced by computer components, to keep components within permissible operating temperature limits. Components that are susceptible to temporary malfunction or permanent failure if overheated include integrated circuits such as central processing units (CPUs), chipsets, graphics cards, and hard disk drives.

<span class="mw-page-title-main">Jean Charles Athanase Peltier</span> French physicist

Jean Charles Athanase Peltier was a French physicist. He was originally a watch dealer, but at the age of 30 began experiments and observations in physics.

Energy harvesting is the process by which energy is derived from external sources, then stored for use by small, wireless autonomous devices, like those used in wearable electronics, condition monitoring, and wireless sensor networks.

An atomic battery, nuclear battery, radioisotope battery or radioisotope generator is a device which uses energy from the decay of a radioactive isotope to generate electricity. Like nuclear reactors, they generate electricity from nuclear energy, but differ in that they do not use a chain reaction. Although commonly called batteries, they are technically not electrochemical and cannot be charged or recharged. They are very costly, but have an extremely long life and high energy density, and so they are typically used as power sources for equipment that must operate unattended for long periods of time, such as spacecraft, pacemakers, underwater systems and automated scientific stations in remote parts of the world.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements.

<span class="mw-page-title-main">Thermal management (electronics)</span> Regulation of the temperature of electronic circuitry to prevent inefficiency or failure

All electronic devices and circuitry generate excess heat and thus require thermal management to improve reliability and prevent premature failure. The amount of heat output is equal to the power input, if there are no other energy interactions. There are several techniques for cooling including various styles of heat sinks, thermoelectric coolers, forced air systems and fans, heat pipes, and others. In cases of extreme low environmental temperatures, it may actually be necessary to heat the electronic components to achieve satisfactory operation.

<span class="mw-page-title-main">Thermoelectric generator</span> Device that converts heat flux into electrical energy

A thermoelectric generator (TEG), also called a Seebeck generator, is a solid state device that converts heat flux directly into electrical energy through a phenomenon called the Seebeck effect. Thermoelectric generators function like heat engines, but are less bulky and have no moving parts. However, TEGs are typically more expensive and less efficient.

Junction temperature, short for transistor junction temperature, is the highest operating temperature of the actual semiconductor in an electronic device. In operation, it is higher than case temperature and the temperature of the part's exterior. The difference is equal to the amount of heat transferred from the junction to case multiplied by the junction-to-case thermal resistance.

<span class="mw-page-title-main">Heat spreader</span> Device that tends to equalize temperature over its surface

A heat spreader transfers energy as heat from a hotter source to a colder heat sink or heat exchanger. There are two thermodynamic types, passive and active. The most common sort of passive heat spreader is a plate or block of material having high thermal conductivity, such as copper, aluminum, or diamond. An active heat spreader speeds up heat transfer with expenditure of energy as work supplied by an external source.

<span class="mw-page-title-main">Thermal copper pillar bump</span>

The thermal copper pillar bump, also known as the "thermal bump", is a thermoelectric device made from thin-film thermoelectric material embedded in flip chip interconnects for use in electronics and optoelectronic packaging, including: flip chip packaging of CPU and GPU integrated circuits (chips), laser diodes, and semiconductor optical amplifiers (SOA). Unlike conventional solder bumps that provide an electrical path and a mechanical connection to the package, thermal bumps act as solid-state heat pumps and add thermal management functionality locally on the surface of a chip or to another electrical component. The diameter of a thermal bump is 238 μm and 60 μm high.

Electronics cooling encompasses thermal design, analysis and experimental characterization of electronic systems as a discrete discipline with the product creation process for an electronics product, or an electronics sub-system within a product. On-line sources of information are available and a number of books have been published on this topic.

Thermal inductance refers to the phenomenon wherein a thermal change of an object surrounded by a fluid will induce a change in convection currents within that fluid, thus inducing a change in the kinetic energy of the fluid. It is considered the thermal analogue to electrical inductance in system equivalence modeling; its unit is the thermal henry.

References

  1. Wang, Lei; Li, Baoweng (March 2008). "Phononics gets hot". Physics World. 21 (3): 27–29. Bibcode:2008PhyW...21c..27W. doi:10.1088/2058-7058/21/03/31.
  2. https://www.cnr.it/it/comunicato-stampa/6045/ CNR - Diodo termico, dove il calore va a senso unico
  3. Martínez-Pérez, Maria José; Fornieri, Antonio; Giazotto, Francesco (2015). "Rectification of electronic heat current by a hybrid thermal diode". Nature Nanotechnology. 10 (4): 303–307. arXiv: 1403.3052 . Bibcode:2015NatNa..10..303M. doi:10.1038/nnano.2015.11. PMID   25705868. S2CID   11654721.
  4. MIT News - Turning heat to electricity
  5. "Chips turn more heat to power TRN 121901". www.trnmag.com. Archived from the original on 26 February 2009. Retrieved 14 January 2022.