Virgo Consortium

Last updated

The Virgo Consortium was founded in 1994 for Cosmological Supercomputer Simulations in response to the UK's High Performance Computing Initiative. Virgo developed rapidly into an international collaboration between a dozen scientists in the UK, Germany, Netherlands, Canada, United States and Japan.

Consortium association of legal entities, usually businesses

A consortium is an association of two or more individuals, companies, organizations or governments with the objective of participating in a common activity or pooling their resources for achieving a common goal.

<i>N</i>-body simulation simulation of a dynamical system of particles, usually under the influence of physical forces, such as gravity

In physics and astronomy, an N-body simulation is a simulation of a dynamical system of particles, usually under the influence of physical forces, such as gravity. N-body simulations are widely used tools in astrophysics, from investigating the dynamics of few-body systems like the Earth-Moon-Sun system to understanding the evolution of the large-scale structure of the universe. In physical cosmology, N-body simulations are used to study processes of non-linear structure formation such as galaxy filaments and galaxy halos from the influence of dark matter. Direct N-body simulations are used to study the dynamical evolution of star clusters.

Netherlands Constituent country of the Kingdom of the Netherlands in Europe

The Netherlands is a country located mainly in Northwestern Europe. The European portion of the Netherlands consists of twelve separate provinces that border Germany to the east, Belgium to the south, and the North Sea to the northwest, with maritime borders in the North Sea with Belgium, Germany and the United Kingdom. Together with three island territories in the Caribbean Sea—Bonaire, Sint Eustatius and Saba—it forms a constituent country of the Kingdom of the Netherlands. The official language is Dutch, but a secondary official language in the province of Friesland is West Frisian.

Contents

Nodes

The largest nodes are the Institute for Computational Cosmology in the UK and the Max Planck Institute for Astrophysics in Germany. Other nodes exist in the UK, Netherlands, Canada, USA and Japan.

In telecommunications networks, a node is either a redistribution point or a communication endpoint. The definition of a node depends on the network and protocol layer referred to. A physical network node is an active electronic device that is attached to a network, and is capable of creating, receiving, or transmitting information over a communications channel. A passive distribution point such as a distribution frame or patch panel is consequently not a node.

Science Goals

The science goals are to carry out state-of-the-art cosmological simulations with research areas in:

Dark matter Hypothetical form of matter comprising most of the matter in the universe

Dark matter is a form of matter that is thought to account for approximately 85% of the matter in the universe and about a quarter of its total energy density. The majority of dark matter is thought to be non-baryonic in nature, possibly being composed of some as-yet undiscovered subatomic particles. Its presence is implied in a variety of astrophysical observations, including gravitational effects that cannot be explained by accepted theories of gravity unless more matter is present than can be seen. For this reason, most experts think dark matter to be abundant in the universe and to have had a strong influence on its structure and evolution. Dark matter is called dark because it does not appear to interact with observable electromagnetic radiation, such as light, and is thus invisible to the entire electromagnetic spectrum, making it extremely difficult to detect using usual astronomical equipment.

Dark matter halo A theoretical component of a galaxy that envelops the galactic disc and extends well beyond the edge of the visible galaxy

According to modern models of physical cosmology, a dark matter halo is a basic unit of cosmological structure. It is a region that has decoupled from cosmic expansion and contains gravitationally bound matter. A single dark matter halo may contain multiple virialized clumps of dark matter bound together by gravity, known as subhalos. Modern cosmological models, such as ΛCDM, propose that dark matter halos and subhalos may contain galaxies. The dark matter halo of a galaxy envelops the galactic disc and extends well beyond the edge of the visible galaxy. Thought to consist of dark matter, halos have not been observed directly. Their existence is inferred through observations of their effects on the motions of stars and gas in galaxies and gravitational lensing. Dark matter halos play a key role in current models of galaxy formation and evolution. Theories that attempt to explain the nature of dark matter halos with varying degrees of success include Cold Dark Matter (CDM), Warm Dark Matter, and massive compact halo objects (MACHOs).

Galaxy formation and evolution The processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time

The study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies. Galaxy formation is hypothesized to occur from structure formation theories, as a result of tiny quantum fluctuations in the aftermath of the Big Bang. The simplest model in general agreement with observed phenomena is the Lambda-CDM model—that is, that clustering and merging allows galaxies to accumulate mass, determining both their shape and structure.

Projects

The Millennium Run, or Millennium Simulation is a computer N-body simulation used to investigate how the distribution of matter in the Universe has evolved over time, in particular, how the observed population of galaxies was formed. It is used by scientists working in physical cosmology to compare observations with theoretical predictions.

The Millennium Simulation

This N-body simulation used more than 10 billion particles to trace the evolution of the matter distribution in a cubic region of the Universe over 2 billion light-years on a side. The first results that were published in 2005 in an issue of Nature, shows how comparing such simulated data to large observational surveys can improve the understanding of the physical processes underlying the buildup of real galaxies and black holes.

Universe Universe events since the Big Bang 13.8 billion years ago

The Universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. While the spatial size of the entire Universe is unknown, it is possible to measure the size of the observable universe, which is currently estimated to be 93 billion light years in diameter. In various multiverse hypotheses, a universe is one of many causally disconnected constituent parts of a larger multiverse, which itself comprises all of space and time and its contents.

<i>Nature</i> (journal) British multidisciplinary scientific journal

Nature is a British multidisciplinary scientific journal, first published on 4 November 1869. It is one of the most recognizable scientific journals in the world, and was ranked the world's most cited scientific journal by the Science Edition of the 2010 Journal Citation Reports and is ascribed an impact factor of 40.137, making it one of the world's top academic journals. It is one of the few remaining academic journals that publishes original research across a wide range of scientific fields.

Member Countries & Institutes

Related Research Articles

Physical cosmology Universe events since the Big Bang 13.8 billion years ago

Physical cosmology is a branch of cosmology concerned with the studies of the largest-scale structures and dynamics of the universe and with fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood. Physical cosmology, as it is now understood, began with the development in 1915 of Albert Einstein's general theory of relativity, followed by major observational discoveries in the 1920s: first, Edwin Hubble discovered that the universe contains a huge number of external galaxies beyond the Milky Way; then, work by Vesto Slipher and others showed that the universe is expanding. These advances made it possible to speculate about the origin of the universe, and allowed the establishment of the Big Bang theory, by Georges Lemaître, as the leading cosmological model. A few researchers still advocate a handful of alternative cosmologies; however, most cosmologists agree that the Big Bang theory explains the observations better.

In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter. Observations indicate that approximately 85% of the matter in the universe is dark matter, with only a small fraction being the ordinary baryonic matter that composes stars, planets, and living organisms. Cold refers to the fact that the dark matter moves slowly compared to the speed of light, while dark indicates that it interacts very weakly with ordinary matter and electromagnetic radiation.

In physical cosmology, a protogalaxy, which could also be called a "primeval galaxy", is a cloud of gas which is forming into a galaxy. It is believed that the rate of star formation during this period of galactic evolution will determine whether a galaxy is a spiral or elliptical galaxy; a slower star formation tends to produce a spiral galaxy. The smaller clumps of gas in a protogalaxy form into stars.

A galactic halo is an extended, roughly spherical component of a galaxy which extends beyond the main, visible component. Several distinct components of galaxies comprise the halo:

The cuspy halo problem refers to a discrepancy between the inferred dark matter density profiles of low-mass galaxies and the density profiles predicted by cosmological N-body simulations. Nearly all simulations form dark matter halos which have "cuspy" dark matter distributions, with density increasing steeply at small radii, while the rotation curves of most observed dwarf galaxies suggest that they have flat central dark matter density profiles ("cores").

A dark galaxy is a hypothesized galaxy with no, or very few, stars. They received their name because they have no visible stars, but may be detectable if they contain significant amounts of gas. Astronomers have long theorized the existence of dark galaxies, but there are no confirmed examples to date. Dark galaxies are distinct from intergalactic gas clouds caused by galactic tidal interactions, since these gas clouds do not contain dark matter, so they do not technically qualify as galaxies. Distinguishing between intergalactic gas clouds and galaxies is difficult; most candidate dark galaxies turn out to be tidal gas clouds. The best candidate dark galaxies to date include HI1225+01, AGC229385, and numerous gas clouds detected in studies of quasars.

Structure formation The formation of galaxies, galaxy clusters and larger structures from small early density fluctuations

In physical cosmology, structure formation is the formation of galaxies, galaxy clusters and larger structures from small early density fluctuations. The universe, as is now known from observations of the cosmic microwave background radiation, began in a hot, dense, nearly uniform state approximately 13.8 billion years ago. However, looking in the sky today, we see structures on all scales, from stars and planets to galaxies and, on still larger scales, galaxy clusters and sheet-like structures of galaxies separated by enormous voids containing few galaxies. Structure formation attempts to model how these structures formed by gravitational instability of small early density ripples.

Galaxy merger process by which two galaxies join into one

Galaxy mergers can occur when two galaxies collide. They are the most violent type of galaxy interaction. The gravitational interactions between galaxies and the friction between the gas and dust have major effects on the galaxies involved. The exact effects of such mergers depend on a wide variety of parameters such as collision angles, speeds, and relative size/composition, and are currently an extremely active area of research. Galaxy mergers are important because the merger rate is fundamental measurement of galaxy evolution. The merger rate also provides astronomers with clues about how galaxies bulked up over time.

GADGET

GADGET is free software for cosmological N-body/SPH simulations written by Volker Springel at the Max Planck Institute for Astrophysics. The name is an acronym of "GAlaxies with Dark matter and Gas intEracT". It is released under the GNU GPL.

Simon White British astronomer

Simon David Manton White, FRS, is a British astrophysicist. He is one of four directors at the Max Planck Institute for Astrophysics.

George Petros Efstathiou is a British astrophysicist who is Professor of Astrophysics (1909) and Director of the Kavli Institute for Cosmology at the University of Cambridge. He was previously Savilian Professor of Astronomy at the University of Oxford.

The Institute for Computational Cosmology (ICC) is a Research Institute at Durham University, England. It was founded in November 2002 as part of the Ogden Centre for Fundamental Physics, which also includes the Institute for Particle Physics Phenomenology (IPPP). The ICC's primary mission is to advance fundamental knowledge in cosmology. Topics of active research include: the nature of dark matter and dark energy, the evolution of cosmic structure, the formation of galaxies, and the determination of fundamental parameters.

The Bolshoi simulation, run in 2010 on the Pleiades supercomputer at the NASA Ames Research Center, was the most accurate cosmological simulation to that date of the evolution of the large-scale structure of the universe. The Bolshoi simulation used the now-standard ΛCDM (Lambda-CDM) model of the universe and the WMAP five-year and seven-year cosmological parameters from NASA's Wilkinson Microwave Anisotropy Probe team. "The principal purpose of the Bolshoi simulation is to compute and model the evolution of dark matter halos, thereby rendering the invisible visible for astronomers to study, and to predict visible structure that astronomers can seek to observe." “Bolshoi” is a Russian word meaning “big.”

Illustris project

The Illustris project is an ongoing series of astrophysical simulations run by an international collaboration of scientists. The aim is to study the processes of galaxy formation and evolution in the universe with a comprehensive physical model. Early results are described in a number of publications following widespread press coverage. The project publicly released all data produced by the simulations in April, 2015. A followup to the project, IllustrisTNG, was presented in 2017.

Alan Duffy (astronomer) Professional astronomer and science communicator (born 1983).

Alan R Duffy is a professional astronomer and science communicator. He was born in England, raised in Ireland, and is currently based in Australia. He is a Research Fellow and Associate Professor at the Centre for Astrophysics and Supercomputing at Swinburne University of Technology, and he is the Lead Scientist at the Royal Institution of Australia.

Claudia Maraston is a Professor of Astrophysics at the University of Portsmouth. She designs models for the calculation of spectro-photometric evolution of stellar populations. She is the winner of the 2018 Royal Astronomical Society Eddington Medal.

References

  1. Projects
  2. Schaye, Joop; Crain, Robert A; Bower, Richard G; Furlong, Michelle; Schaller, Matthieu; Theuns, Tom; Claudio Dalla Vecchia; Frenk, Carlos S; McCarthy, I. G; Helly, John C; Jenkins, Adrian; Rosas-Guevara, Y. M; White, Simon D. M; Baes, Maarten; Booth, C. M; Camps, Peter; Navarro, Julio F; Qu, Yan; Rahmati, Alireza; Sawala, Till; Thomas, Peter A; Trayford, James (2 October 2014). "The EAGLE project: Simulating the evolution and assembly of galaxies and their environments". Monthly Notices of the Royal Astronomical Society. 446 (446): 521. arXiv: 1407.7040 . Bibcode:2015MNRAS.446..521S. doi:10.1093/mnras/stu2058.