Baumgartner's axiom

Last updated

In mathematical set theory, Baumgartner's axiom (BA) can be one of three different axioms introduced by James Earl Baumgartner.

A subset of the real line is said to be -dense if every two points are separated by exactly other points, where is the smallest uncountable cardinality. This would be true for the real line itself under the continuum hypothesis. An axiom introduced by Baumgartner (1973) states that all -dense subsets of the real line are order-isomorphic, providing a higher-cardinality analogue of Cantor's isomorphism theorem that countable dense subsets are isomorphic. Baumgartner's axiom is a consequence of the proper forcing axiom. It is consistent with a combination of ZFC, Martin's axiom, and the negation of the continuum hypothesis, [1] but not implied by those hypotheses. [2]

Another axiom introduced by Baumgartner (1975) states that Martin's axiom for partially ordered sets MAP(κ) is true for all partially ordered sets P that are countable closed, well met and ℵ1-linked and all cardinals κ less than 21.

Baumgartner's axiom A is an axiom for partially ordered sets introduced in ( Baumgartner 1983 , section 7). A partial order (P, ≤) is said to satisfy axiom A if there is a family ≤n of partial orderings on P for n = 0, 1, 2, ... such that

  1. 0 is the same as 
  2. If p n+1q then p nq
  3. If there is a sequence pn with pn+1 npn then there is a q with q npn for all n.
  4. If I is a pairwise incompatible subset of P then for all p and for all natural numbers n there is a q such that q np and the number of elements of I compatible with q is countable.

Related Research Articles

In mathematics, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states:

There is no set whose cardinality is strictly between that of the integers and the real numbers.

In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.

In mathematics, an uncountable set is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers.

In mathematics, Suslin's problem is a question about totally ordered sets posed by Mikhail Yakovlevich Suslin (1920) and published posthumously. It has been shown to be independent of the standard axiomatic system of set theory known as ZFC: Solovay & Tennenbaum (1971) showed that the statement can neither be proven nor disproven from those axioms, assuming ZF is consistent.

Aleph number infinite cardinal number

In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph.

In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular.

In mathematics, the beth numbers are a certain sequence of infinite cardinal numbers, conventionally written , where is the second Hebrew letter (beth). The beth numbers are related to the aleph numbers, but there may be numbers indexed by that are not indexed by .

In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers.

In order theory, a partially ordered set X is said to satisfy the countable chain condition, or to be ccc, if every strong antichain in X is countable.

In mathematics, set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC).

In the mathematical field of set theory, the proper forcing axiom (PFA) is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings.

In set theory, an Aronszajn tree is an uncountable tree with no uncountable branches and no uncountable levels. For example, every Suslin tree is an Aronszajn tree. More generally, for a cardinal κ, a κ-Aronszajn tree is a tree of cardinality κ in which all levels have size less than κ and all branches have height less than κ. They are named for Nachman Aronszajn, who constructed an Aronszajn tree in 1934; his construction was described by Kurepa (1935).

In mathematics, infinitary combinatorics, or combinatorial set theory, is an extension of ideas in combinatorics to infinite sets. Some of the things studied include continuous graphs and trees, extensions of Ramsey's theorem, and Martin's axiom. Recent developments concern combinatorics of the continuum and combinatorics on successors of singular cardinals.

In set theory, a branch of mathematical logic, Martin's maximum, introduced by Foreman, Magidor & Shelah (1988) and named after Donald Martin, is a generalization of the proper forcing axiom, itself a generalization of Martin's axiom. It represents the broadest class of forcings for which a forcing axiom is consistent.

In the mathematical theory of infinite graphs, the Erdős–Dushnik–Miller theorem is a form of Ramsey's theorem stating that every infinite graph contains either a countably infinite independent set, or a clique with the same cardinality as the whole graph.

In axiomatic set theory, the Rasiowa–Sikorski lemma is one of the most fundamental facts used in the technique of forcing. In the area of forcing, a subset E of a poset is called dense in P if for any pP there is eE with ep. If D is a family of dense subsets of P, then a filter F in P is called D-generic if

This is a glossary of set theory.

In order theory and model theory, branches of mathematics, Cantor's isomorphism theorem states that every two countable dense unbounded linear orders are order-isomorphic. It is named after Georg Cantor, and can be proved by the back-and-forth method sometimes attributed to Cantor, but Cantor's original proof only used the "going forth" half of this method.

References

  1. Baumgartner, James E. (1973), "All -dense sets of reals can be isomorphic", Fundamenta Mathematicae, 79 (2): 101–106, doi: 10.4064/fm-79-2-101-106 , MR   0317934
  2. Avraham, Uri; Shelah, Saharon (1981), "Martin's axiom does not imply that every two -dense sets of reals are isomorphic", Israel Journal of Mathematics , 38 (1–2): 161–176, doi:10.1007/BF02761858, MR   0599485