Bicone

Last updated
Bicone.svg

In geometry, a bicone or dicone (from Latin : bi-, and Greek: di-, both meaning "two") is the three-dimensional surface of revolution of a rhombus around one of its axes of symmetry. Equivalently, a bicone is the surface created by joining two congruent, right, circular cones at their bases.

Contents

A bicone has circular symmetry and orthogonal bilateral symmetry.

Geometry

For a circular bicone with radius R and height center-to-top H, the formula for volume becomes

For a right circular cone, the surface area is

  where    is the slant height.


"Regular" right (symmetric) n-gonal bipyramids:
Bipyramid nameDigonal bipyramid Triangular bipyramid
(See: J12)
Square bipyramid
(See: O)
Pentagonal bipyramid
(See: J13)
Hexagonal bipyramid Heptagonal bipyramid Octagonal bipyramid Enneagonal bipyramid Decagonal bipyramid ... Apeirogonal bipyramid
Polyhedron image Triangular bipyramid.png Square bipyramid.png Pentagonale bipiramide.png Hexagonale bipiramide.png Heptagonal bipyramid.png Octagonal bipyramid.png Enneagonal bipyramid.png Decagonal bipyramid.png ...
Spherical tiling image Spherical digonal bipyramid.svg Spherical trigonal bipyramid.png Spherical square bipyramid.svg Spherical pentagonal bipyramid.svg Spherical hexagonal bipyramid.png Spherical heptagonal bipyramid.png Spherical octagonal bipyramid.png Spherical enneagonal bipyramid.png Spherical decagonal bipyramid.png Plane tiling image Infinite bipyramid.svg
Face config. V2.4.4V3.4.4V4.4.4V5.4.4V6.4.4V7.4.4V8.4.4V9.4.4V10.4.4...V∞.4.4
Coxeter diagram CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2x.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 5.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 6.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 7.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 9.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 10.pngCDel node.png...CDel node f1.pngCDel 2.pngCDel node f1.pngCDel infin.pngCDel node.png

See also

Related Research Articles

<span class="mw-page-title-main">Area</span> Size of a two-dimensional surface

Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve or the volume of a solid.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Steradian</span> SI derived unit of solid angle

The steradian or square radian is the unit of solid angle in the International System of Units (SI). It is used in three-dimensional geometry, and is analogous to the radian, which quantifies planar angles. Whereas an angle in radians, projected onto a circle, gives a length on the circumference, a solid angle in steradians, projected onto a sphere, gives an area on the surface. The name is derived from the Greek στερεός stereos 'solid' + radian.

<span class="mw-page-title-main">Frustum</span> Portion of a solid that lies between two parallel planes cutting this solid.

In geometry, a frustum is the portion of a solid that lies between two parallel planes cutting this solid. In the case of a pyramid, the base faces are polygonal, the side faces are trapezoidal. A right frustum is a right pyramid or a right cone truncated perpendicularly to its axis; otherwise it is an oblique frustum.

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

<span class="mw-page-title-main">Paraboloid</span> Quadric surface with one axis of symmetry and no center of symmetry

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

<span class="mw-page-title-main">Rhombus</span> Quadrilateral in which all sides have the same length

In plane Euclidean geometry, a rhombus is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a "diamond", after the diamonds suit in playing cards which resembles the projection of an octahedral diamond, or a lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle, and the latter sometimes refers specifically to a rhombus with a 45° angle.

The Method of Mechanical Theorems, also referred to as The Method, is one of the major surviving works of the ancient Greek polymath Archimedes. The Method takes the form of a letter from Archimedes to Eratosthenes, the chief librarian at the Library of Alexandria, and contains the first attested explicit use of indivisibles. The work was originally thought to be lost, but in 1906 was rediscovered in the celebrated Archimedes Palimpsest. The palimpsest includes Archimedes' account of the "mechanical method", so called because it relies on the center of weights of figures (centroid) and the law of the lever, which were demonstrated by Archimedes in On the Equilibrium of Planes.

<span class="mw-page-title-main">Sphericon</span> Type of rollable 3D shape

In solid geometry, the sphericon is a solid that has a continuous developable surface with two congruent, semi-circular edges, and four vertices that define a square. It is a member of a special family of rollers that, while being rolled on a flat surface, bring all the points of their surface to contact with the surface they are rolling on. It was discovered independently by carpenter Colin Roberts in the UK in 1969, by dancer and sculptor Alan Boeding of MOMIX in 1979, and by inventor David Hirsch, who patented it in Israel in 1980.

<span class="mw-page-title-main">Cone</span> Geometric shape

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.

<span class="mw-page-title-main">Cylinder</span> Three-dimensional solid

A cylinder has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base.

<span class="mw-page-title-main">Spherical cap</span> Section of a sphere

In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere, so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a hemisphere.

<span class="mw-page-title-main">Cross section (geometry)</span> Projection of a solid body onto a plane in 3D space, or an intersection of the two

In geometry and science, a cross section is the non-empty intersection of a solid body in three-dimensional space with a plane, or the analog in higher-dimensional spaces. Cutting an object into slices creates many parallel cross-sections. The boundary of a cross-section in three-dimensional space that is parallel to two of the axes, that is, parallel to the plane determined by these axes, is sometimes referred to as a contour line; for example, if a plane cuts through mountains of a raised-relief map parallel to the ground, the result is a contour line in two-dimensional space showing points on the surface of the mountains of equal elevation.

In classical mechanics, the shell theorem gives gravitational simplifications that can be applied to objects inside or outside a spherically symmetrical body. This theorem has particular application to astronomy.

<span class="mw-page-title-main">Pyramid (geometry)</span> Conic solid with a polygonal base

In geometry, a pyramid is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. It is a conic solid with polygonal base. A pyramid with an n-sided base has n + 1 vertices, n + 1 faces, and 2n edges. All pyramids are self-dual.

<span class="mw-page-title-main">Conoid</span> Ruled surface made of lines parallel to a plane and intersecting an axis

In geometry a conoid is a ruled surface, whose rulings (lines) fulfill the additional conditions:

<span class="mw-page-title-main">Hypercone</span> 4-dimensional figure

In geometry, a hypercone is the figure in the 4-dimensional Euclidean space represented by the equation

<span class="mw-page-title-main">Cavalieri's principle</span> Geometry concept

In geometry, Cavalieri's principle, a modern implementation of the method of indivisibles, named after Bonaventura Cavalieri, is as follows:

<span class="mw-page-title-main">Spherical sector</span> Intersection of a sphere and cone emanating from its center

In geometry, a spherical sector, also known as a spherical cone, is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap. It is the three-dimensional analogue of the sector of a circle.

In geometry, a polycon is a kind of a developable roller. It is made of identical pieces of a cone whose apex angle equals the angle of an even sided regular polygon. In principle, there are infinitely many polycons, as many as there are even sided regular polygons. Most members of the family have elongated spindle like shapes. The polycon family generalizes the sphericon. It was discovered by the Israeli inventor David Hirsch in 2017

References