Bishop's Ring

Last updated
Bishop's Ring around the sun due to volcanic ash of the Eyjafjallajokull volcano on Iceland. Photographed from Leiden, the Netherlands, on 18 May 2010. BishopRing18mei2010 18 sml.jpg
Bishop's Ring around the sun due to volcanic ash of the Eyjafjallajökull volcano on Iceland. Photographed from Leiden, the Netherlands, on 18 May 2010.

A Bishop's Ring is a diffuse brown or bluish halo observed around the sun. It is typically observed after large volcanic eruptions. The first recorded observation of a Bishop's Ring was by Rev. Sereno Edwards Bishop [1] of Honolulu, after the Krakatoa eruption of August 27, 1883. [2]

This gigantic explosion threw a vast quantity of dust and volatile gases into the atmosphere. Sulfate aerosols remained in the stratosphere, causing colorful sunrises and sunsets for several years. The first observation of this ring was published in 1883, being described as a “faint halo” around the sun. Bishop observed the phenomenon on September 5, 1883; the phenomenon was subsequently named after him, and was the subject of an 1886 professorial dissertation (Habilitationsschrift) by Albert Riggenbach. [3]

Most observations agree that the inner rim of the ring is whitish or bluish white and that its outside is reddish, brownish or purple. The area enclosed by the ring is significantly brighter than its surroundings. From the sequence of colors with the red on the outside one can conclude that the phenomenon is caused by diffraction because halos always have their red part on their inside. [4] On average, the radius of the ring is about 28°, but it can vary between 10° and 30°, depending on the dust size. [5] The maximum of 30° is a rather big radius which can only be caused by very small dust particles (0.002 mm) which all have to be of about the same size.

Sulfur compound aerosols derived from volcanic eruptions have been found to be the source for the Bishop's Ring effect. [5] [6] A Bishop's Ring was observed for a long period of time in Japan after the eruption of Mt. Pinatubo.

Related Research Articles

Afterglow

An afterglow is a broad arch of whitish or pinkish sunlight in the sky that is scattered by fine particulates, like dust, suspended in the atmosphere. An afterglow may appear above the highest clouds in the hour of fading twilight or be reflected off high snowfields in mountain regions long after sunset. The particles produce a scattering effect upon the component parts of white light. The opposite of an afterglow is a foreglow, which occurs before sunrise.

Krakatoa Volcanic caldera in the Sunda Strait

Krakatoa, also transcribed Krakatau, is a caldera in the Sunda Strait between the islands of Java and Sumatra in the Indonesian province of Lampung. The caldera is part of a volcanic island group comprising four islands. Two, Lang and Verlaten, are remnants of a previous volcanic edifice destroyed in eruptions long before the famous 1883 eruption; another, Rakata, is the remnant of a much larger island destroyed in the 1883 eruption.

Year Without a Summer 1816, a volcanic winter event during the Little Ice Age

The year 1816 is known as the Year Without a Summer because of severe climate abnormalities that caused average global temperatures to decrease by 0.4–0.7 °C (0.7–1 °F). Summer temperatures in Europe were the coldest on record between the years of 1766–2000. This resulted in major food shortages across the Northern Hemisphere.

Stratovolcano Type of conical volcano composed of layers of lava and tephra

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and hardens before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high-to-intermediate levels of silica, with lesser amounts of less-viscous mafic magma. Extensive felsic lava flows are uncommon, but have travelled as far as 15 km (9.3 mi).

Sunrise Time of day when the sun appears above the earth

Sunrise is the moment when the upper rim of the Sun appears on the horizon in the morning. The term can also refer to the entire process of the solar disk crossing the horizon and its accompanying atmospheric effects.

Diffuse sky radiation solar radiation reaching the Earths surface

Diffuse sky radiation is solar radiation reaching the Earth's surface after having been scattered from the direct solar beam by molecules or particulates in the atmosphere. Also called sky radiation, the determinative process for changing the colors of the sky. Approximately 23% of direct incident radiation of total sunlight is removed from the direct solar beam by scattering into the atmosphere; of this amount about two-thirds ultimately reaches the earth as photon diffused skylight radiation.

A volcanic winter is a reduction in global temperatures caused by volcanic ash and droplets of sulfuric acid and water obscuring the Sun and raising Earth's albedo after a large, particularly explosive volcanic eruption. Long-term cooling effects are primarily dependent upon injection of sulfur gases into the stratosphere where they undergo a series of reactions to create sulfuric acid which can nucleate and form aerosols. Volcanic stratospheric aerosols cool the surface by reflecting solar radiation and warm the stratosphere by absorbing terrestrial radiation. The variations in atmospheric warming and cooling result in changes in tropospheric and stratospheric circulation.

Global dimming Reduction in the amount of sunlight reaching Earths surface

Global dimming is the reduction in the amount of global direct irradiance at the Earth's surface that has been observed since systematic measurements began in the 1950s. The effect varies by location, but worldwide it has been estimated to be of the order of a 4–20% reduction. However, after discounting an anomaly caused by the eruption of Mount Pinatubo in 1991, a very slight reversal in the overall trend has been observed.

Atmospheric diffraction

Atmospheric diffraction is manifested in the following principal ways:

Noctilucent cloud cloud-like phenomena in the upper atmosphere of Earth

Noctilucent clouds, or night shining clouds, are tenuous cloud-like phenomena in the upper atmosphere of Earth. They consist of ice crystals and are only visible during astronomical twilight. Noctilucent roughly means "night shining" in Latin. They are most often observed during the summer months from latitudes between ±50° and ±70°. Too faint to be seen in daylight, they are visible only when the observer and the lower layers of the atmosphere are in Earth's shadow, but while these very high clouds are still in sunlight. Recent studies suggest that increased atmospheric methane emissions produce additional water vapor once the methane molecules reach the mesosphere – creating, or reinforcing existing noctilucent clouds.

Haze Atmospheric phenomenon in which dust, smoke, and other dry particulates obscure the clarity of the sky

Haze is traditionally an atmospheric phenomenon in which dust, smoke, and other dry particulates obscure the clarity of the sky. The World Meteorological Organization manual of codes includes a classification of horizontal obscuration into categories of fog, ice fog, steam fog, mist, haze, smoke, volcanic ash, dust, sand, and snow. Sources for haze particles include farming, traffic, industry, and wildfires. Seen from afar and depending on the direction of view with respect to the Sun, haze may appear brownish or bluish, while mist tends to be bluish grey. Whereas haze often is thought of as a phenomenon of dry air, mist formation is a phenomenon of humid air. However, haze particles may act as condensation nuclei for the subsequent formation of mist droplets; such forms of haze are known as "wet haze."

Plinian eruption Pyroclastic volcanic eruption similar to the eruption of Mount Vesuvius in 79 AD

Plinian eruptions or Vesuvian eruptions are volcanic eruptions marked by their similarity to the eruption of Mount Vesuvius in 79 AD, which destroyed the ancient Roman cities of Herculaneum and Pompeii. The eruption was described in a letter written by Pliny the Younger, after the death of his uncle Pliny the Elder.

Corona (optical phenomenon) Optical phenomenon of the sky

In meteorology, a corona is an optical phenomenon produced by the diffraction of sunlight or moonlight by individual small water droplets and sometimes tiny ice crystals of a cloud or on a foggy glass surface. In its full form, a corona consists of several concentric, pastel-colored rings around the celestial object and a central bright area called aureole. The aureole is often the only visible part of the corona and has the appearance of a bluish-white disk which fades to reddish-brown towards the edge. The angular diameter of a corona depends on the sizes of the water droplets involved; smaller droplets produce larger coronae. For the same reason, the corona is the most pronounced when the size of the droplets is most uniform. Coronae differ from halos in that the latter are formed by refraction from comparatively large rather than small ice crystals.

Cloud iridescence

Cloud iridescence or irisation is a colorful optical phenomenon that occurs in a cloud and appears in the general proximity of the Sun or Moon. The colors resemble those seen in soap bubbles and oil on a water surface. It is a type of photometeor. This fairly common phenomenon is most often observed in altocumulus, cirrocumulus, lenticular, and cirrus clouds. They sometimes appear as bands parallel to the edge of the clouds. Iridescence is also seen in the much rarer polar stratospheric clouds, also called nacreous clouds.

Stratospheric sulfur aerosols

Stratospheric sulfur aerosols are sulfur-rich particles which exist in the stratosphere region of the Earth's atmosphere. The layer of the atmosphere in which they exist is known as the Junge layer, or simply the stratospheric aerosol layer. These particles consist of a mixture of sulfuric acid and water. They are created naturally, such as by photochemical decomposition of sulfur-containing gases, e.g. carbonyl sulfide. When present in high levels, e.g. after a strong volcanic eruption such as Mount Pinatubo, they produce a cooling effect, by reflecting sunlight, and by modifying clouds as they fall out of the stratosphere. This cooling may persist for a few years before the particles fall out.

1883 eruption of Krakatoa Catastrophic volcanic eruption

The 1883 eruption of Krakatoa in the Sunda Strait began on 20 May 1883 and peaked on the late morning of Monday, 27 August 1883, when over 70% of the island of Krakatoa and its surrounding archipelago were destroyed as it collapsed into a caldera.

Thor (volcano)

Thor is an active volcano on Jupiter's moon Io. It is located on Io's anti-Jupiter hemisphere at 39.15°N 133.14°W. A major eruption with high thermal emission and a large, volcanic plume was observed during a Galileo flyby on August 6, 2001, when the spacecraft flew through the outer portions of the plume allowing for direct sampling. The eruption continued into Galileo's next flyby in October 2001. As seen during high-resolution images taken during the eruption, Thor consists of a series of dark lava flows emanating from a set of nearby volcanic depressions. Before the eruption, the area consisted of red-brown plains, composed of irradiated sulfur, typical of Io's mid- to high-northern latitudes and a set of yellow flows, possibly consisting of sulfur or silicate flows covered by diffuse sulfur deposits. During the New Horizons encounter in February 2007, Thor was still active, with the spacecraft observing thermal emission in the near-infrared and a volcanic plume at the volcano.

Karl Johann Kiessling was a German physicist, mathematician, and botanist born in Culm; today Chełmno, Poland.

Explosive volcanic eruptions affect the global climate mainly through injecting sulfur bearing gases into the stratosphere, which oxidize to form sulfate aerosols. Stratospheric sulfur aerosols spread around the globe by the atmospheric circulation, producing surface cooling by scattering solar radiation back to space. This cooling effect on the ocean surface usually lasts for several years as the lifetime of sulfate aerosols is about 2–3 years. However, in the subsurface ocean the cooling signal may persist for a longer time and may have impacts on some decadal variabilities, such as the Atlantic meridional overturning circulation (AMOC).

1808 mystery eruption Volcanic eruption in southwest Pacific

The 1808 mystery eruption was a large volcanic eruption conjectured to have taken place in late 1808, possibly in the southwest Pacific. A VEI-6 eruption, comparable to the 1883 eruption of Krakatoa, is suspected of having contributed to a period of global cooling that lasted for years, analogous to how the 1815 eruption of Mount Tambora (VEI-7) led to the Year Without a Summer in 1816.

References

  1. A brief biography of the Reverend Sereno Edward Bishop (with photo) appears on pages 171–172 of: Kevin Hamilton (2012) "Sereno Bishop, Rollo Russell, Bishop's Ring and the discovery of the "Krakatoa easterlies"," Archived 2012-10-22 at the Wayback Machine Atmosphere-Ocean, vol. 50, no. 2, pages 169–175.
  2. See:
    • Bishop, Sereno E. (17 January 1884) "Letters to the Editor: The remarkable sunsets," Nature, 29: 259–260; on page 260, Bishop mentions a purple ring around the sun.
    • S.E. Bishop also mentions observations of a "lilac or chocolate" ring around the sun on page 129 of: Rev. Sereno E. Bishop (1886) "The origin of the red glows," American Meteorological Journal, vol. 3, pages 127–136, 193–196.
    • Krakatoa Committee of the Royal Society [of London], The Eruption of Krakatoa and Subsequent Phenomena (London, England: Harrison and Sons, 1888). See: Part IV., Section I.(E) The large corona round the sun and moon in 1883-4-5, generally known as "Bishop's ring." by Mr. E. Douglas Archibald, pages 232–263.
  3. Albert Riggenbach (1886). Beobachtungen über die Dämmerung, insbesondere über das Purpurlicht und seine Beziehungen zum Bishop'schen Sonnenring (Observations regarding the twilight, particularly regarding the purple light and its relation to the Bishop's ring around the sun). Basel: H. Georg's Verlag. pp.  105.
  4. Among the first people to recognize that Bishop's ring was a result of the diffraction of sunlight by dust particles was the Swiss physicist Eduard Hagenbach-Bischoff. See: François-Alphonse Forel (1884) "La couronne solaire de l'été de 1884" (The solar corona of the summer of 1884), Archives des sciences physiques et naturelles, series 3, vol. 12, pages 173–184; see especially page 182, where Forel says that the corona was not consistent with a 22° halo, which is produced by refractions through ice crystals.
  5. 1 2 Asano, S. (1993) "Estimation of the size distribution of Pinatubo volcanic dust from Bishop's Ring simulations." Geophysical Research Letters20(6): 447–450.
  6. Kenneth Sassen, Thomas Peter, Beiping P. Luo, and Paul J. Crutzen (1994) "Volcanic Bishop’s ring: evidence for a sulfuric acid tetrahydrate particle aureole," Applied Optics33: 4602–4606.