Darwinian puzzle

Last updated
The coloration of the poison dart frog is readily visible to predators Ranitomeya amazonica.jpg
The coloration of the poison dart frog is readily visible to predators

A Darwinian puzzle is a trait that appears to reduce the fitness of individuals that possess it. Such traits attract the attention of evolutionary biologists. Several human traits pose challenges to evolutionary thinking, as they are relatively prevalent but are associated with lower reproductive success through reduced fertility and/or longevity. Some of the classic examples include: left handedness, menopause, and mental disorders. These traits are also found in animals, a peacock shows an example of a trait that may reduce its fitness. The bigger the tail, the easier it is seen by predators and it also may hinder the movement of the peacock. Darwin, in fact, solved this "puzzle" by explaining the peacock's tail as evidence of sexual selection; a bigger tail confers evolutionary fitness on the male by allowing it to attract more females than other males with shorter tails. The phrase "Darwinian puzzle" itself is rare and of unclear origin; it's typically talked about in the context of animal behavior.

Contents

Applications in nature

Darwinian puzzles are evident in nature, even though it appears to reduce the fitness of the individual that possesses it. Different individuals use the odd phenomenon in particular ways such as toxins, fitness demonstration, and mimicry.

Factors that affect Darwinian puzzles

There are a few contributing factors in biology which may affect Darwinian puzzles.

This may be based on common descent. Animals may share 1/4, 1/2, or even in some cases all of their genes with others. Identical twins have a coefficient of relatedness of r=1. Full siblings have a coefficient of relatedness of r=.50, and half siblings and first cousins have a coefficient of relatedness of r=.25. Depending on how related two animals are, they may be more likely to act altruistically to one another. Even if it is of no benefit to themselves, it helps to promote survival of at least some of their genes as they are shared with others closely related to them. The formula to calculate coefficient of relatedness is (RXY) = Σ (1/2)n.

Hamilton's rule is often used to explain altruism in populations based upon relatedness. It can be represented by the formula (rB > C) where r represents relatedness, B represents benefit to the recipient, and C represents cost to the altruist. Animals may use Hamilton's rule in many instances where it will not promote their own fitness, but will have an evolutionary effect on the overall fitness of the species in general.

Examples

The following phenomena are sometimes called Darwinian puzzles:

See also

Notes

    Related Research Articles

    <span class="mw-page-title-main">Mimicry</span> Imitation of another species for selective advantage

    In evolutionary biology, mimicry is an evolved resemblance between an organism and another object, often an organism of another species. Mimicry may evolve between different species, or between individuals of the same species. Often, mimicry functions to protect a species from predators, making it an anti-predator adaptation. Mimicry evolves if a receiver perceives the similarity between a mimic and a model and as a result changes its behaviour in a way that provides a selective advantage to the mimic. The resemblances that evolve in mimicry can be visual, acoustic, chemical, tactile, or electric, or combinations of these sensory modalities. Mimicry may be to the advantage of both organisms that share a resemblance, in which case it is a form of mutualism; or mimicry can be to the detriment of one, making it parasitic or competitive. The evolutionary convergence between groups is driven by the selective action of a signal-receiver or dupe. Birds, for example, use sight to identify palatable insects and butterflies, whilst avoiding the noxious ones. Over time, palatable insects may evolve to resemble noxious ones, making them mimics and the noxious ones models. In the case of mutualism, sometimes both groups are referred to as "co-mimics". It is often thought that models must be more abundant than mimics, but this is not so. Mimicry may involve numerous species; many harmless species such as hoverflies are Batesian mimics of strongly defended species such as wasps, while many such well-defended species form Müllerian mimicry rings, all resembling each other. Mimicry between prey species and their predators often involves three or more species.

    <span class="mw-page-title-main">Handicap principle</span> Hypothesis in evolutionary biology

    The handicap principle is a hypothesis proposed by the biologist Amotz Zahavi to explain how evolution may lead to "honest" or reliable signalling between animals which have an obvious motivation to bluff or deceive each other. It suggests that costly signals must be reliable signals, costing the signaller something that could not be afforded by an individual with less of a particular trait. For example, in sexual selection, the theory suggests that animals of greater biological fitness signal this status through handicapping behaviour, or morphology that effectively lowers this quality. The central idea is that sexually selected traits function like conspicuous consumption, signalling the ability to afford to squander a resource. Receivers then know that the signal indicates quality, because inferior-quality signallers are unable to produce such wastefully extravagant signals.

    <span class="mw-page-title-main">Animal communication</span> Transfer of information from animal to animal

    Animal communication is the transfer of information from one or a group of animals to one or more other animals that affects the current or future behavior of the receivers. Information may be sent intentionally, as in a courtship display, or unintentionally, as in the transfer of scent from predator to prey. Information may be transferred to an "audience" of several receivers. Animal communication is a rapidly growing area of study in disciplines including animal behavior, sociology, neurology and animal cognition. Many aspects of animal behavior, such as symbolic name use, emotional expression, learning and sexual behavior, are being understood in new ways.

    <span class="mw-page-title-main">Polymorphism (biology)</span> Occurrence of two or more clearly different morphs or forms in the population of a species

    In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative phenotypes, in the population of a species. To be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population.

    Frequency-dependent selection is an evolutionary process by which the fitness of a phenotype or genotype depends on the phenotype or genotype composition of a given population.

    <span class="mw-page-title-main">Inclusive fitness</span> Measure of evolutionary success based on the number of offspring the individual supports

    In evolutionary biology, inclusive fitness is one of two metrics of evolutionary success as defined by W. D. Hamilton in 1964:

    Evolutionary game theory (EGT) is the application of game theory to evolving populations in biology. It defines a framework of contests, strategies, and analytics into which Darwinian competition can be modelled. It originated in 1973 with John Maynard Smith and George R. Price's formalisation of contests, analysed as strategies, and the mathematical criteria that can be used to predict the results of competing strategies.

    <span class="mw-page-title-main">Poison dart frog</span> Family of amphibians

    Poison dart frog is the common name of a group of frogs in the family Dendrobatidae which are native to tropical Central and South America. These species are diurnal and often have brightly colored bodies. This bright coloration is correlated with the toxicity of the species, making them aposematic. Some species of the family Dendrobatidae exhibit extremely bright coloration along with high toxicity, while others have cryptic coloration with minimal to no amount of observed toxicity. The species that have great toxicity derive this feature from their diet of ants, mites and termites. However, other species that exhibit cryptic coloration, and low to no amounts of toxicity, eat a much larger variety of prey. Many species of this family are threatened due to human infrastructure encroaching on their habitats.

    In biology, altruism refers to behaviour by an individual that increases the fitness of another individual while decreasing the fitness of themselves. Altruism in this sense is different from the philosophical concept of altruism, in which an action would only be called "altruistic" if it was done with the conscious intention of helping another. In the behavioural sense, there is no such requirement. As such, it is not evaluated in moral terms—it is the consequences of an action for reproductive fitness that determine whether the action is considered altruistic, not the intentions, if any, with which the action is performed.

    <span class="mw-page-title-main">Müllerian mimicry</span> Mutually beneficial mimicry of strongly defended species

    Müllerian mimicry is a natural phenomenon in which two or more well-defended species, often foul-tasting and sharing common predators, have come to mimic each other's honest warning signals, to their mutual benefit. The benefit to Müllerian mimics is that predators only need one unpleasant encounter with one member of a set of Müllerian mimics, and thereafter avoid all similar coloration, whether or not it belongs to the same species as the initial encounter. It is named after the German naturalist Fritz Müller, who first proposed the concept in 1878, supporting his theory with the first mathematical model of frequency-dependent selection, one of the first such models anywhere in biology.

    <span class="mw-page-title-main">Aposematism</span> Honest signalling of an animals powerful defences

    Aposematism is the advertising by an animal to potential predators that it is not worth attacking or eating. This unprofitability may consist of any defenses which make the prey difficult to kill and eat, such as toxicity, venom, foul taste or smell, sharp spines, or aggressive nature. These advertising signals may take the form of conspicuous coloration, sounds, odours, or other perceivable characteristics. Aposematic signals are beneficial for both predator and prey, since both avoid potential harm.

    <span class="mw-page-title-main">Stotting</span> Jumping display of quadrupeds thought to deter predators

    Stotting is a behavior of quadrupeds, particularly gazelles, in which they spring into the air, lifting all four feet off the ground simultaneously. Usually, the legs are held in a relatively stiff position. Many explanations of stotting have been proposed, though for several of them there is little evidence either for or against.

    <span class="mw-page-title-main">Animal coloration</span> General appearance of an animal

    Animal coloration is the general appearance of an animal resulting from the reflection or emission of light from its surfaces. Some animals are brightly coloured, while others are hard to see. In some species, such as the peafowl, the male has strong patterns, conspicuous colours and is iridescent, while the female is far less visible.

    Competitive altruism is a possible mechanism for the persistence of cooperative behaviors, specifically those that are performed unconditionally. The theory of reciprocal altruism can be used to explain behaviors that are performed by a donor who receives some sort of benefit in the future. When no such compensation is received, however, reciprocity fails to explain altruistic behavior.

    <span class="mw-page-title-main">Mimicry in plants</span>

    In evolutionary biology, mimicry in plants is where a plant organism evolves to resemble another organism physically or chemically, increasing the mimic's Darwinian fitness. Mimicry in plants has been studied far less than mimicry in animals, with fewer documented cases and peer-reviewed studies. However, it may provide protection against herbivory, or may deceptively encourage mutualists, like pollinators, to provide a service without offering a reward in return.

    Deception in animals is the transmission of misinformation by one animal to another, of the same or different species, in a way that propagates beliefs that are not true.

    An illegitimate receiver is an organism that intercepts another organism's signal, despite not being the signaler's intended target. In animal communication, a signal is any transfer of information from one organism to another, including visual, olfactory, and auditory signals. If the illegitimate receiver's interception of the signal is a means of finding prey, the interception is typically a fitness detriment to either the signaler or the organism meant to legitimately receive the signal, but it is a fitness advantage to the illegitimate receiver because it provides energy in the form of food. Illegitimate receivers can have important effects on the evolution of communication behaviors.

    Social selection is a term used with varying meanings in biology.

    <span class="mw-page-title-main">Coloration evidence for natural selection</span> Early evidence for Darwinism from animal coloration

    Animal coloration provided important early evidence for evolution by natural selection, at a time when little direct evidence was available. Three major functions of coloration were discovered in the second half of the 19th century, and subsequently used as evidence of selection: camouflage ; mimicry, both Batesian and Müllerian; and aposematism.

    Reciprocal altruism in humans refers to an individual behavior that gives benefit conditionally upon receiving a returned benefit, which draws on the economic concept – ″gains in trade″. Human reciprocal altruism would include the following behaviors : helping patients, the wounded, and the others when they are in crisis; sharing food, implement, knowledge.

    References