Epicotyl

Last updated

An epicotyl is important for the beginning stages of a plant's life. It is the region of a seedling stem above the stalks of the seed leaves of an embryo plant. It grows rapidly, showing hypogeal germination, and extends the stem above the soil surface. A common misconception is that the epicotyl, being closer to the apex of the plant, is the first part to emerge after germination - rather, the hypocotyl, the region of the stem between the point of attachment of the cotyledons and the root - forms a hook during hypogeal germination and pushes out of the soil, allowing the more delicate tissues of the plumules and apical meristem to avoid damage from pushing through the soil. The epicotyl will expand and form the point of attachment of the shoot apex and leaf primordia or "first true leaves". Cotyledons may remain belowground or be pushed up aboveground with the growing stem depending on the plant species in question.

In plant physiology, the epicotyl is the embryonic shoot above the cotyledons. In most plants the epicotyl will eventually develop into the leaves of the plant. In dicots, the hypocotyl is what appears to be the base stem under the spent withered cotyledons, and the shoot just above that is the epicotyl. In monocot plants, the first shoot that emerges from the ground or from the seed is the epicotyl, from which the first shoots and leaves emerge.

Lengthening of the epicotyl is thought to be controlled by the phytochrome photoreceptors.

See also

Related Research Articles

<span class="mw-page-title-main">Seed</span> Embryonic plant enclosed in a protective outer covering

In botany, a seed is a plant embryo and food reserve enclosed in a protective outer covering called a seed coat (testa). More generally, the term "seed" means anything that can be sown, which may include seed and husk or tuber. Seeds are the product of the ripened ovule, after the embryo sac is fertilized by sperm from pollen, forming a zygote. The embryo within a seed develops from the zygote and grows within the mother plant to a certain size before growth is halted.

<span class="mw-page-title-main">Cotyledon</span> Embryonic leaf first appearing from a germinating seed

A cotyledon is a significant part of the embryo within the seed of a plant, and is defined as "the embryonic leaf in seed-bearing plants, one or more of which are the first to appear from a germinating seed." The number of cotyledons present is one characteristic used by botanists to classify the flowering plants (angiosperms). Species with one cotyledon are called monocotyledonous ("monocots"). Plants with two embryonic leaves are termed dicotyledonous ("dicots").

<span class="mw-page-title-main">Radicle</span> Radicle forms the future root

In botany, the radicle is the first part of a seedling to emerge from the seed during the process of germination. The radicle is the embryonic root of the plant, and grows downward in the soil. Above the radicle is the embryonic stem or hypocotyl, supporting the cotyledon(s).

<span class="mw-page-title-main">Germination</span> Process by which an organism grows from a spore or seed

Germination is the process by which an organism grows from a seed or spore. The term is applied to the sprouting of a seedling from a seed of an angiosperm or gymnosperm, the growth of a sporeling from a spore, such as the spores of fungi, ferns, bacteria, and the growth of the pollen tube from the pollen grain of a seed plant.

<span class="mw-page-title-main">Hypocotyl</span> Plant part

The hypocotyl is the stem of a germinating seedling, found below the cotyledons and above the radicle (root).

Hypogeal, hypogean, hypogeic and hypogeous are biological terms describing an organism's activity below the soil surface.

Epigeal, epigean, epigeic and epigeous are biological terms describing an organism's activity above the soil surface.

Plant embryonic development, also plant embryogenesis is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination. The zygote produced after fertilization must undergo various cellular divisions and differentiations to become a mature embryo. An end stage embryo has five major components including the shoot apical meristem, hypocotyl, root meristem, root cap, and cotyledons. Unlike the embryonic development in animals, and specifically in humans, plant embryonic development results in an immature form of the plant, lacking most structures like leaves, stems, and reproductive structures. However, both plants and animals including humans, pass through a phylotypic stage that evolved independently and that causes a developmental constraint limiting morphological diversification.

<span class="mw-page-title-main">Seedling</span> Young plant developing out from a seed

A seedling is a young sporophyte developing out of a plant embryo from a seed. Seedling development starts with germination of the seed. A typical young seedling consists of three main parts: the radicle, the hypocotyl, and the cotyledons. The two classes of flowering plants (angiosperms) are distinguished by their numbers of seed leaves: monocotyledons (monocots) have one blade-shaped cotyledon, whereas dicotyledons (dicots) possess two round cotyledons. Gymnosperms are more varied. For example, pine seedlings have up to eight cotyledons. The seedlings of some flowering plants have no cotyledons at all. These are said to be acotyledons.

<span class="mw-page-title-main">Microgreen</span> Vegetable greens harvested shortly after sprouting

Microgreens are vegetable greens harvested just after the cotyledon leaves have developed with one set of true leaves. They are used as a visual, flavor and texture enhancement. Microgreens are used to add sweetness and spiciness to foods. Microgreens are smaller than "baby greens" because they are harvested soon after sprouting, rather than after the plant has matured to produce multiple leaves.

<span class="mw-page-title-main">Etiolation</span> Developmental pathway followed in flowering plants in absence of visible light

Etiolation is a process in flowering plants grown in partial or complete absence of light. It is characterized by long, weak stems; smaller leaves due to longer internodes; and a pale yellow color (chlorosis). The development of seedlings in the dark is known as "skotomorphogenesis" and leads to etiolated seedlings.

Aphanomyces euteiches is a water mould, or oomycete, plant pathogen responsible for the disease Aphanomyces root rot. The species Aphanomyces euteiches can infect a variety of legumes. Symptoms of the disease can differ among hosts but generally include reduced root volume and function, leading to stunting and chlorotic foliage. Aphanomyces root rot is an important agricultural disease in the United States, Europe, Australia, New Zealand, and Japan. Management includes using resistant crop varieties and having good soil drainage, as well as testing soil for the pathogen to avoid infected fields.

<i>Schippia</i> Genus of palms

Schippia concolor, the mountain pimento or silver pimeto, is a medium-sized palm species that is native to Belize and Guatemala. Named for its discoverer, Australian botanist William A. Schipp, the species is threatened by habitat loss. It is the sole species in the genus Schippia.

This page provides a glossary of plant morphology. Botanists and other biologists who study plant morphology use a number of different terms to classify and identify plant organs and parts that can be observed using no more than a handheld magnifying lens. This page provides help in understanding the numerous other pages describing plants by their various taxa. The accompanying page—Plant morphology—provides an overview of the science of the external form of plants. There is also an alphabetical list: Glossary of botanical terms. In contrast, this page deals with botanical terms in a systematic manner, with some illustrations, and organized by plant anatomy and function in plant physiology.

This glossary of botanical terms is a list of definitions of terms and concepts relevant to botany and plants in general. Terms of plant morphology are included here as well as at the more specific Glossary of plant morphology and Glossary of leaf morphology. For other related terms, see Glossary of phytopathology, Glossary of lichen terms, and List of Latin and Greek words commonly used in systematic names.

<i>Cyclamen persicum</i> Species of flowering plant in the family Primulaceae

Cyclamen persicum, the Persian cyclamen, is a species of flowering herbaceous perennial plant growing from a tuber, native to rocky hillsides, shrubland, and woodland up to 1,200 m (3,900 ft) above sea level, from south-central Turkey to Lebanon-Syria and the Palestine region. It also grows in Algeria and Tunisia and on the Greek islands of Rhodes, Karpathos, and Crete, where it may have been introduced by monks. Cultivars of this species are the commonly seen florist's cyclamen.

<span class="mw-page-title-main">Epigeal germination</span>

Epigeal germination is a botanical term indicating that the germination of a plant takes place above the ground. An example of a plant with epigeal germination is the common bean. The opposite of epigeal is hypogeal.

<span class="mw-page-title-main">Hypogeal germination</span>

Hypogeal germination is a botanical term indicating that the germination of a plant takes place below the ground. An example of a plant with hypogeal germination is the pea. The opposite of hypogeal is epigeal.

<span class="mw-page-title-main">Coleorhiza</span>

The coleorhiza, coleorrhiza or root sheath is a protective layer of tissue that surrounds the radicle in monocotyledon seeds. During germination, the coleorhiza is the first part to grow out of the seed, growing through cell elongation. Soon afterwards, it is pierced through by the emerging primary root and then remains like a collar around the root base. Also the adventitious roots have a coleorhiza.

<span class="mw-page-title-main">Wisconsin Fast Plants</span> Description of a unique model organism (plant) used internationally for research and teaching

Wisconsin Fast Plants is the registered trademark for a cultivar of Brassica rapa, developed as a rapid life-cycle model organism for research and teaching. Wisconsin Fast Plants are a member of the Brassicaceae family, closely related to the turnip and bok choy. Wisconsin Fast Plants were developed in accordance with an ideotype for an ideal model organism to be used in expediting plant research. Similarly, their rapid life cycle and other model organism characteristics made them easy to grow in large numbers in classrooms. For the last few decades they have been grown in classrooms and laboratories around the world.