Furstenberg boundary

Last updated

In potential theory, a discipline within applied mathematics, the Furstenberg boundary is a notion of boundary associated with a group. It is named for Harry Furstenberg, who introduced it in a series of papers beginning in 1963 (in the case of semisimple Lie groups). The Furstenberg boundary, roughly speaking, is a universal moduli space for the Poisson integral, expressing a harmonic function on a group in terms of its boundary values.

Contents

Motivation

A model for the Furstenberg boundary is the hyperbolic disc . The classical Poisson formula for a bounded harmonic function on the disc has the form

where P is the Poisson kernel. Any function f on the disc determines a function on the group of Möbius transformations of the disc by setting F(g) = f(g(0)). Then the Poisson formula has the form

where m is the Haar measure on the boundary. This function is then harmonic in the sense that it satisfies the mean-value property with respect to a measure on the Möbius group induced from the usual Lebesgue measure of the disc, suitably normalized. The association of a bounded harmonic function to an (essentially) bounded function on the boundary is one-to-one.

Construction for semi-simple groups

In general, let G be a semi-simple Lie group and μ a probability measure on G that is absolutely continuous. A function f on G is μ-harmonic if it satisfies the mean value property with respect to the measure μ:

There is then a compact space Π, with a G action and measure ν, such that any bounded harmonic function on G is given by

for some bounded function on Π.

The space Π and measure ν depend on the measure μ (and so, what precisely constitutes a harmonic function). However, it turns out that although there are many possibilities for the measure ν (which always depends genuinely on μ), there are only a finite number of spaces Π (up to isomorphism): these are homogeneous spaces of G that are quotients of G by some parabolic subgroup, which can be described completely in terms of root data and a given Iwasawa decomposition. Moreover, there is a maximal such space, with quotient maps going down to all of the other spaces, that is called the Furstenberg boundary.

Related Research Articles

Laplaces equation Second order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

Navier–Stokes equations Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are certain partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

Fourier transform Mathematical transform that expresses a function of time as a function of frequency

In mathematics, a Fourier transform (FT) is a mathematical transform that decomposes functions depending on space or time into functions depending on spatial or temporal frequency, such as the expression of a musical chord in terms of the volumes and frequencies of its constituent notes. The term Fourier transform refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of space or time.

Spherical harmonics Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

In complex analysis, the Hardy spacesHp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz, who named them after G. H. Hardy, because of the paper. In real analysis Hardy spaces are certain spaces of distributions on the real line, which are boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the Lp spaces of functional analysis. For 1 ≤ p ≤ ∞ these real Hardy spaces Hp are certain subsets of Lp, while for p < 1 the Lp spaces have some undesirable properties, and the Hardy spaces are much better behaved.

In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.

In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical probability distributions. A Lévy process may thus be viewed as the continuous-time analog of a random walk.

In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson.

In mathematics, subharmonic and superharmonic functions are important classes of functions used extensively in partial differential equations, complex analysis and potential theory.

In the mathematical field known as complex analysis, Jensen's formula, introduced by Johan Jensen (1899), relates the average magnitude of an analytic function on a circle with the number of its zeros inside the circle. It forms an important statement in the study of entire functions.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

Wrapped Cauchy distribution

In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.

In mathematics, a function defined on a region of the complex plane is said to be of bounded type if it is equal to the ratio of two analytic functions bounded in that region. But more generally, a function is of bounded type in a region if and only if is analytic on and has a harmonic majorant on where . Being the ratio of two bounded analytic functions is a sufficient condition for a function to be of bounded type, and if is simply connected the condition is also necessary.

In mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation

In mathematics, a positive harmonic function on the unit disc in the complex numbers is characterized as the Poisson integral of a finite positive measure on the circle. This result, the Herglotz-Riesz representation theorem, was proved independently by Gustav Herglotz and Frigyes Riesz in 1911. It can be used to give a related formula and characterization for any holomorphic function on the unit disc with positive real part. Such functions had already been characterized in 1907 by Constantin Carathéodory in terms of the positive definiteness of their Taylor coefficients.

In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.

In mathematics, the Douady–Earle extension, named after Adrien Douady and Clifford Earle, is a way of extending homeomorphisms of the unit circle in the complex plane to homeomorphisms of the closed unit disk, such that the extension is a diffeomorphism of the open disk. The extension is analytic on the open disk. The extension has an important equivariance property: if the homeomorphism is composed on either side with a Möbius transformation preserving the unit circle the extension is also obtained by composition with the same Möbius transformation. If the homeomorphism is quasisymmetric, the diffeomorphism is quasiconformal. An extension for quasisymmetric homeomorphisms had previously been given by Lars Ahlfors and Arne Beurling; a different equivariant construction had been given in 1985 by Pekka Tukia. Equivariant extensions have important applications in Teichmüller theory; for example, they lead to a quick proof of the contractibility of the Teichmüller space of a Fuchsian group.

In mathematics, the Radó–Kneser–Choquet theorem, named after Tibor Radó, Hellmuth Kneser and Gustave Choquet, states that the Poisson integral of a homeomorphism of the unit circle is a harmonic diffeomorphism of the open unit disk. The result was stated as a problem by Radó and solved shortly afterwards by Kneser in 1926. Choquet, unaware of the work of Radó and Kneser, rediscovered the result with a different proof in 1945. Choquet also generalized the result to the Poisson integral of a homeomorphism from the unit circle to a simple Jordan curve bounding a convex region.

In mathematics, singular integral operators on closed curves arise in problems in analysis, in particular complex analysis and harmonic analysis. The two main singular integral operators, the Hilbert transform and the Cauchy transform, can be defined for any smooth Jordan curve in the complex plane and are related by a simple algebraic formula. In the special case of Fourier series for the unit circle, the operators become the classical Cauchy transform, the orthogonal projection onto Hardy space, and the Hilbert transform a real orthogonal linear complex structure. In general the Cauchy transform is a non-self-adjoint idempotent and the Hilbert transform a non-orthogonal complex structure. The range of the Cauchy transform is the Hardy space of the bounded region enclosed by the Jordan curve. The theory for the original curve can be deduced from that of the unit circle, where, because of rotational symmetry, both operators are classical singular integral operators of convolution type. The Hilbert transform satisfies the jump relations of Plemelj and Sokhotski, which express the original function as the difference between the boundary values of holomorphic functions on the region and its complement. Singular integral operators have been studied on various classes of functions, including Hőlder spaces, Lp spaces and Sobolev spaces. In the case of L2 spaces—the case treated in detail below—other operators associated with the closed curve, such as the Szegő projection onto Hardy space and the Neumann–Poincaré operator, can be expressed in terms of the Cauchy transform and its adjoint.

In mathematics, the Poisson boundary is a measure space associated to a random walk. It is an object designed to encode the asymptotic behaviour of the random walk, i.e. how trajectories diverge when the number of steps goes to infinity. Despite being called a boundary it is in general a purely measure-theoretical object and not a boundary in the topological sense. However, in the case where the random walk is on a topological space the Poisson boundary can be related to the Martin boundary which is an analytic construction yielding a genuine topological boundary. Both boundaries are related to harmonic functions on the space via generalisations of the Poisson formula.

References