Generalizability theory

Last updated

Generalizability theory, or G theory, is a statistical framework for conceptualizing, investigating, and designing reliable observations. It is used to determine the reliability (i.e., reproducibility) of measurements under specific conditions. It is particularly useful for assessing the reliability of performance assessments. It was originally introduced in Cronbach, L.J., Rajaratnam, N., & Gleser, G.C. (1963).

Contents

Overview

In G theory, sources of variation are referred to as facets. Facets are similar to the "factors" used in analysis of variance, and may include persons, raters, items/forms, time, and settings among other possibilities. These facets are potential sources of error and the purpose of generalizability theory is to quantify the amount of error caused by each facet and interaction of facets. The usefulness of data gained from a G study is crucially dependent on the design of the study. Therefore, the researcher must carefully consider the ways in which he/she hopes to generalize any specific results. Is it important to generalize from one setting to a larger number of settings? From one rater to a larger number of raters? From one set of items to a larger set of items? The answers to these questions will vary from one researcher to the next, and will drive the design of a G study in different ways.

In addition to deciding which facets the researcher generally wishes to examine, it is necessary to determine which facet will serve as the object of measurement (e.g. the systematic source of variance) for the purpose of analysis. The remaining facets of interest are then considered to be sources of measurement error. In most cases, the object of measurement will be the person to whom a number/score is assigned. In other cases it may be a group or performers such as a team or classroom. Ideally, nearly all of the measured variance will be attributed to the object of measurement (e.g. individual differences), with only a negligible amount of variance attributed to the remaining facets (e.g., rater, time, setting).

The results from a G study can also be used to inform a decision, or D, study. In a D study, we can ask the hypothetical question of "what would happen if different aspects of this study were altered?" For example, a soft drink company might be interested in assessing the quality of a new product through use of a consumer rating scale. By employing a D study, it would be possible to estimate how the consistency of quality ratings would change if consumers were asked 10 questions instead of 2, or if 1,000 consumers rated the soft drink instead of 100. By employing simulated D studies, it is therefore possible to examine how the generalizability coefficients (similar to reliability coefficients in Classical test theory) would change under different circumstances, and consequently determine the ideal conditions under which our measurements would be the most reliable.

Comparison with classical test theory

The focus of classical test theory (CTT) is on determining error of the measurement. Perhaps the most famous model of CTT is the equation , where X is the observed score, T is the true score, and e is the error involved in measurement. Although e could represent many different types of error, such as rater or instrument error, CTT only allows us to estimate one type of error at a time. Essentially it throws all sources of error into one error term. This may be suitable in the context of highly controlled laboratory conditions, but variance is a part of everyday life. In field research, for example, it is unrealistic to expect that the conditions of measurement will remain constant. Generalizability theory acknowledges and allows for variability in assessment conditions that may affect measurements. The advantage of G theory lies in the fact that researchers can estimate what proportion of the total variance in the results is due to the individual factors that often vary in assessment, such as setting, time, items, and raters.

Another important difference between CTT and G theory is that the latter approach takes into account how the consistency of outcomes may change if a measure is used to make absolute versus relative decisions. An example of an absolute, or criterion-referenced, decision would be when an individual's test score is compared to a cut-off score to determine eligibility or diagnosis (i.e. a child's score on an achievement test is used to determine eligibility for a gifted program). In contrast, an example of a relative, or norm-referenced, decision would be when the individual's test score is used to either (a) determine relative standing as compared to his/her peers (i.e. a child's score on a reading subtest is used to determine which reading group he/she is placed in), or (b) make intra-individual comparisons (i.e. comparing previous versus current performance within the same individual). The type of decision that the researcher is interested in will determine which formula should be used to calculate the generalizability coefficient (similar to a reliability coefficient in CTT).

See also

Related Research Articles

<span class="mw-page-title-main">Psychological statistics</span>

Psychological statistics is application of formulas, theorems, numbers and laws to psychology. Statistical methods for psychology include development and application statistical theory and methods for modeling psychological data. These methods include psychometrics, factor analysis, experimental designs, and Bayesian statistics. The article also discusses journals in the same field.

<span class="mw-page-title-main">Psychometrics</span> Theory and technique of psychological measurement

Psychometrics is a field of study within psychology concerned with the theory and technique of measurement. Psychometrics generally refers to specialized fields within psychology and education devoted to testing, measurement, assessment, and related activities. Psychometrics is concerned with the objective measurement of latent constructs that cannot be directly observed. Examples of latent constructs include intelligence, introversion, mental disorders, and educational achievement. The levels of individuals on nonobservable latent variables are inferred through mathematical modeling based on what is observed from individuals' responses to items on tests and scales.

In statistics and psychometrics, reliability is the overall consistency of a measure. A measure is said to have a high reliability if it produces similar results under consistent conditions:

"It is the characteristic of a set of test scores that relates to the amount of random error from the measurement process that might be embedded in the scores. Scores that are highly reliable are precise, reproducible, and consistent from one testing occasion to another. That is, if the testing process were repeated with a group of test takers, essentially the same results would be obtained. Various kinds of reliability coefficients, with values ranging between 0.00 and 1.00, are usually used to indicate the amount of error in the scores."

Validity is the main extent to which a concept, conclusion or measurement is well-founded and likely corresponds accurately to the real world. The word "valid" is derived from the Latin validus, meaning strong. The validity of a measurement tool is the degree to which the tool measures what it claims to measure. Validity is based on the strength of a collection of different types of evidence described in greater detail below.

Cronbach's alpha, also known as rho-equivalent reliability or coefficient alpha, is a reliability coefficient and a measure of the internal consistency of tests and measures.

The Spearman–Brown prediction formula, also known as the Spearman–Brown prophecy formula, is a formula relating psychometric reliability to test length and used by psychometricians to predict the reliability of a test after changing the test length. The method was published independently by Spearman (1910) and Brown (1910).

Classical test theory (CTT) is a body of related psychometric theory that predicts outcomes of psychological testing such as the difficulty of items or the ability of test-takers. It is a theory of testing based on the idea that a person's observed or obtained score on a test is the sum of a true score (error-free score) and an error score. Generally speaking, the aim of classical test theory is to understand and improve the reliability of psychological tests.

In psychometrics, item response theory (IRT) is a paradigm for the design, analysis, and scoring of tests, questionnaires, and similar instruments measuring abilities, attitudes, or other variables. It is a theory of testing based on the relationship between individuals' performances on a test item and the test takers' levels of performance on an overall measure of the ability that item was designed to measure. Several different statistical models are used to represent both item and test taker characteristics. Unlike simpler alternatives for creating scales and evaluating questionnaire responses, it does not assume that each item is equally difficult. This distinguishes IRT from, for instance, Likert scaling, in which "All items are assumed to be replications of each other or in other words items are considered to be parallel instruments". By contrast, item response theory treats the difficulty of each item as information to be incorporated in scaling items.

In statistics and research, internal consistency is typically a measure based on the correlations between different items on the same test. It measures whether several items that propose to measure the same general construct produce similar scores. For example, if a respondent expressed agreement with the statements "I like to ride bicycles" and "I've enjoyed riding bicycles in the past", and disagreement with the statement "I hate bicycles", this would be indicative of good internal consistency of the test.

Construct validity concerns how well a set of indicators represent or reflect a concept that is not directly measurable. Construct validation is the accumulation of evidence to support the interpretation of what a measure reflects. Modern validity theory defines construct validity as the overarching concern of validity research, subsuming all other types of validity evidence such as content validity and criterion validity.

In psychometrics, the Kuder–Richardson formulas, first published in 1937, are a measure of internal consistency reliability for measures with dichotomous choices. They were developed by Kuder and Richardson.

Lee Joseph Cronbach was an American educational psychologist who made contributions to psychological testing and measurement.

In statistics, inter-rater reliability is the degree of agreement among independent observers who rate, code, or assess the same phenomenon.

The Millon Clinical Multiaxial Inventory – Fourth Edition (MCMI-IV) is the most recent edition of the Millon Clinical Multiaxial Inventory. The MCMI is a psychological assessment tool intended to provide information on personality traits and psychopathology, including specific mental disorders outlined in the DSM-5. It is intended for adults with at least a 5th grade reading level who are currently seeking mental health services. The MCMI was developed and standardized specifically on clinical populations, and the authors are very specific that it should not be used with the general population or adolescents. However, there is evidence base that shows that it may still retain validity on non-clinical populations, and so psychologists will sometimes administer the test to members of the general population, with caution. The concepts involved in the questions and their presentation make it unsuitable for those with below average intelligence or reading ability.

Psychometric software is software that is used for psychometric analysis of data from tests, questionnaires, or inventories reflecting latent psychoeducational variables. While some psychometric analyses can be performed with standard statistical software like SPSS, most analyses require specialized tools.

The Revised NEO Personality Inventory is a personality inventory that assesses an individual on five dimensions of personality, the so-called Big Five personality traits. These traits are openness to experience, conscientiousness, extraversion, agreeableness, and neuroticism. In addition, the NEO PI-R also reports on six subcategories of each Big Five personality trait.

In statistical models applied to psychometrics, congeneric reliability a single-administration test score reliability coefficient, commonly referred to as composite reliability, construct reliability, and coefficient omega. is a structural equation model (SEM)-based reliability coefficients and is obtained from on a unidimensional model. is the second most commonly used reliability factor after tau-equivalent reliability(), and is often recommended as its alternative.

<span class="mw-page-title-main">Average variance extracted</span>

In statistics (classical test theory), average variance extracted (AVE) is a measure of the amount of variance that is captured by a construct in relation to the amount of variance due to measurement error.

Goldine C. Gleser (1915–2004) was an American psychologist and statistician known for her research on the statistics of psychological testing, on generalizability theory, on defence mechanisms, on the psychological effects on child survivors of the Buffalo Creek flood, for her work with Mildred Trotter on estimation of stature, and for her participation in the Cincinnati Radiation Experiments. She was a professor of psychiatry and psychology at the University of Cincinnati.

References