Grothendieck's relative point of view

Last updated

Grothendieck's relative point of view is a heuristic applied in certain abstract mathematical situations, with a rough meaning of taking for consideration families of 'objects' explicitly depending on parameters, as the basic field of study, rather than a single such object. It is named after Alexander Grothendieck, who made extensive use of it in treating foundational aspects of algebraic geometry. Outside that field, it has been influential particularly on category theory and categorical logic.

In the usual formulation, the point of view treats, not objects X of a given category C, but morphisms

f: XS

where S is a fixed object. This idea is made formal in the idea of the slice category of objects of C 'above' S. To move from one slice to another requires a base change; from a technical point of view base change becomes a major issue for the whole approach (see for example Beck–Chevalley conditions).

A base change 'along' a given morphism

g: TS

is typically given by the fiber product, producing an object over T from one over S. The 'fiber' terminology is significant: the underlying heuristic is that X over S is a family of fibers, one for each 'point' of S; the fiber product is then the family on T, which described by fibers is for each point of T the fiber at its image in S. This set-theoretic language is too naïve to fit the required context, certainly, from algebraic geometry. It combines, though, with the use of the Yoneda lemma to replace the 'point' idea with that of treating an object, such as S, as 'as good as' the representable functor it sets up.

The Grothendieck–Riemann–Roch theorem from about 1956 is usually cited as the key moment for the introduction of this circle of ideas. The more classical types of Riemann–Roch theorem are recovered in the case where S is a single point (i.e. the final object in the working category C). Using other S is a way to have versions of theorems 'with parameters', i.e. allowing for continuous variation, for which the 'frozen' version reduces the parameters to constants.

In other applications, this way of thinking has been used in topos theory, to clarify the role of set theory in foundational matters. Assuming that we don't have a commitment to one 'set theory' (all topoi are in some sense equally set theories for some intuitionistic logic) it is possible to state everything relative to some given set theory that acts as a base topos.

See also

This article uses terminology from category theory.

Related Research Articles

<span class="mw-page-title-main">Alexander Grothendieck</span> Mathematician

Alexander Grothendieck was a German-born mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century.

In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

This article gives some very general background to the mathematical idea of topos. This is an aspect of category theory, and has a reputation for being abstruse. The level of abstraction involved cannot be reduced beyond a certain point; but on the other hand context can be given. This is partly in terms of historical development, but also to some extent an explanation of differing attitudes to category theory.

The following outline is provided as an overview of and guide to category theory, the area of study in mathematics that examines in an abstract way the properties of particular mathematical concepts, by formalising them as collections of objects and arrows, where these collections satisfy certain basic conditions. Many significant areas of mathematics can be formalised as categories, and the use of category theory allows many intricate and subtle mathematical results in these fields to be stated, and proved, in a much simpler way than without the use of categories.

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

<span class="mw-page-title-main">Pierre Deligne</span> Belgian mathematician

Pierre René, Viscount Deligne is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal.

In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.

<span class="mw-page-title-main">Grothendieck–Riemann–Roch theorem</span>

In mathematics, specifically in algebraic geometry, the Grothendieck–Riemann–Roch theorem is a far-reaching result on coherent cohomology. It is a generalisation of the Hirzebruch–Riemann–Roch theorem, about complex manifolds, which is itself a generalisation of the classical Riemann–Roch theorem for line bundles on compact Riemann surfaces.

Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space X to another topological space Y is associated the pullback functor taking bundles on Y to bundles on X. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories with "descent". Fibrations also play an important role in categorical semantics of type theory, and in particular that of dependent type theories.

<span class="mw-page-title-main">Space (mathematics)</span> Mathematical set with some added structure

In mathematics, a space is a set with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself.

In category theory, the concept of an element, or a point, generalizes the more usual set theoretic concept of an element of a set to an object of any category. This idea often allows restating of definitions or properties of morphisms given by a universal property in more familiar terms, by stating their relation to elements. Some very general theorems, such as Yoneda's lemma and the Mitchell embedding theorem, are of great utility for this, by allowing one to work in a context where these translations are valid. This approach to category theory – in particular the use of the Yoneda lemma in this way – is due to Grothendieck, and is often called the method of the functor of points.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, a topos is a category that behaves like the category of sheaves of sets on a topological space. Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic.

This is a glossary of algebraic geometry.

Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras, simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory of singular algebraic varieties and cotangent complexes in deformation theory, among the other applications.

In algebraic geometry, there are various generalizations of the Riemann–Roch theorem; among the most famous is the Grothendieck–Riemann–Roch theorem, which is further generalized by the formulation due to Fulton et al.

In mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties. Base change is a closely related notion.

References