Hilbert's fourteenth problem

Last updated

In mathematics, Hilbert's fourteenth problem, that is, number 14 of Hilbert's problems proposed in 1900, asks whether certain algebras are finitely generated.

Contents

The setting is as follows: Assume that k is a field and let K be a subfield of the field of rational functions in n variables,

k(x1, ..., xn ) over k.

Consider now the k-algebra R defined as the intersection

Hilbert conjectured that all such algebras are finitely generated over k.

Some results were obtained confirming Hilbert's conjecture in special cases and for certain classes of rings (in particular the conjecture was proved unconditionally for n = 1 and n = 2 by Zariski in 1954). Then in 1959 Masayoshi Nagata found a counterexample to Hilbert's conjecture. The counterexample of Nagata is a suitably constructed ring of invariants for the action of a linear algebraic group.

History

The problem originally arose in algebraic invariant theory. Here the ring R is given as a (suitably defined) ring of polynomial invariants of a linear algebraic group over a field k acting algebraically on a polynomial ring k[x1, ..., xn] (or more generally, on a finitely generated algebra defined over a field). In this situation the field K is the field of rational functions (quotients of polynomials) in the variables xi which are invariant under the given action of the algebraic group, the ring R is the ring of polynomials which are invariant under the action. A classical example in nineteenth century was the extensive study (in particular by Cayley, Sylvester, Clebsch, Paul Gordan and also Hilbert) of invariants of binary forms in two variables with the natural action of the special linear group SL2(k) on it. Hilbert himself proved the finite generation of invariant rings in the case of the field of complex numbers for some classical semi-simple Lie groups (in particular the general linear group over the complex numbers) and specific linear actions on polynomial rings, i.e. actions coming from finite-dimensional representations of the Lie-group. This finiteness result was later extended by Hermann Weyl to the class of all semi-simple Lie-groups. A major ingredient in Hilbert's proof is the Hilbert basis theorem applied to the ideal inside the polynomial ring generated by the invariants.

Zariski's formulation

Zariski's formulation of Hilbert's fourteenth problem asks whether, for a quasi-affine algebraic variety X over a field k, possibly assuming X normal or smooth, the ring of regular functions on X is finitely generated over k.

Zariski's formulation was shown [1] to be equivalent to the original problem, for X normal. (See also: Zariski's finiteness theorem.)

Éfendiev F.F. (Fuad Efendi) provided symmetric algorithm generating basis of invariants of n-ary forms of degree r. [2]

Nagata's counterexample

Nagata (1960) gave the following counterexample to Hilbert's problem. The field k is a field containing 48 elements a1i, ...,a16i, for i=1, 2, 3 that are algebraically independent over the prime field. The ring R is the polynomial ring k[x1,...,x16, t1,...,t16] in 32 variables. The vector space V is a 13-dimensional vector space over k consisting of all vectors (b1,...,b16) in k16 orthogonal to each of the three vectors (a1i, ...,a16i) for i=1, 2, 3. The vector space V is a 13-dimensional commutative unipotent algebraic group under addition, and its elements act on R by fixing all elements tj and taking xj to xj + bjtj. Then the ring of elements of R invariant under the action of the group V is not a finitely generated k-algebra.

Several authors have reduced the sizes of the group and the vector space in Nagata's example. For example, Totaro (2008) showed that over any field there is an action of the sum G3
a
of three copies of the additive group on k18 whose ring of invariants is not finitely generated.

See also

Related Research Articles

<span class="mw-page-title-main">Commutative ring</span> Algebraic structure

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In mathematics, Hilbert's Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893.

<span class="mw-page-title-main">Commutative algebra</span> Branch of algebra that studies commutative rings

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Ring theory</span> Branch of algebra

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

In mathematics and specifically in algebraic geometry, the dimension of an algebraic variety may be defined in various equivalent ways.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are invariant, under the transformations from a given linear group. For example, if we consider the action of the special linear group SLn on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SLn.

<span class="mw-page-title-main">Linear algebraic group</span> Subgroup of the group of invertible n×n matrices

In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .

In mathematics Haboush's theorem, often still referred to as the Mumford conjecture, states that for any semisimple algebraic group G over a field K, and for any linear representation ρ of G on a K-vector space V, given v ≠ 0 in V that is fixed by the action of G, there is a G-invariant polynomial F on V, without constant term, such that

In mathematics, geometric invariant theory is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper in classical invariant theory.

Masayoshi Nagata was a Japanese mathematician, known for his work in the field of commutative algebra.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

In mathematics, a D-module is a module over a ring D of differential operators. The major interest of such D-modules is as an approach to the theory of linear partial differential equations. Since around 1970, D-module theory has been built up, mainly as a response to the ideas of Mikio Sato on algebraic analysis, and expanding on the work of Sato and Joseph Bernstein on the Bernstein–Sato polynomial.

In mathematics, the Nagata conjecture on curves, named after Masayoshi Nagata, governs the minimal degree required for a plane algebraic curve to pass through a collection of very general points with prescribed multiplicities.

This is a glossary of commutative algebra.

<span class="mw-page-title-main">Alexander Varchenko</span>

Alexander Nikolaevich Varchenko is a Soviet and Russian mathematician working in geometry, topology, combinatorics and mathematical physics.

In algebra, the fixed-point subring of an automorphism f of a ring R is the subring of the fixed points of f, that is,

In mathematics, a Hironaka decomposition is a representation of an algebra over a field as a finitely generated free module over a polynomial subalgebra or a regular local ring. Such decompositions are named after Heisuke Hironaka, who used this in his unpublished master's thesis at Kyoto University.

In mathematics, a derivation of a commutative ring is called a locally nilpotent derivation (LND) if every element of is annihilated by some power of .

References

Bibliography
Footnotes
  1. Winkelmann, Jörg (2003), "Invariant rings and quasiaffine quotients", Math. Z., 244 (1): 163–174, arXiv: math/0007076 , doi:10.1007/s00209-002-0484-9.
  2. Éfendiev, F. F. (1992). "Explicit construction of elements of the ring S(n, r) of invariants of n-ary forms of degree R". Mathematical Notes. 51 (2): 204–207. doi:10.1007/BF02102130.